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Abstract. This paper presents the AR-Drone quadrotor helicopter as
a robotic platform usable for research and education. Apart from the
description of hardware and software, we discuss several issues regarding
drone equipment, abilities and performance. We show, how to perform
basic tasks of position stabilization, object following and autonomous
navigation. Moreover, we demonstrate the drone ability to act as an ex-
ternal navigation system for a formation of mobile robots. To further
demonstrate the drone utility for robotic research, we describe experi-
ments in which the drone has been used. We also introduce a freely avail-
able software package, which allows researches and students to quickly
overcome the initial problems and focus on more advanced issues.

1 Introduction

A quadrotor helicopter or quadcopter is an aerial vehicle propelled by four ro-
tors. The propellers have a fixed pitch, which makes the quadcopter mechanically
simpler than an ordinary helicopter. However, the quadcopter is inherently un-
stable, and therefore, its control is rather difficult. The progress on the field of
control engineering allowed to deal with inherent instability of the quadrotors,
and therefore, they have started to appear in military, security and surveillance
systems.

Nowadays, the quadcopters can perform quick and complex maneuvers [1],
navigate autonomously in structured [2] and unstructured [3] environments and
cooperate in manipulation and transportation tasks [4]. However, the commercial
quadrotor helicopters are too expensive to be used by students or small research
teams. Although there exist several quadcopter toys, these are too small to
carry necessary sensor equipment. In recent years, several community projects
aimed to develop an affordable quadrotor helicopter have appeared [5]. However,
these projects are still in progress and have not filled the gap between expensive
commercial platforms and sensorless toys.

In the autumn of 2010 an affordable quadcopter, equipped with the necessary
sensors and with a suitable software interface has appeared on the market. Orig-
inally intended as a high-tech toy for augmented reality games, the drone quickly
caught attention of universities and research institutions, and nowadays is being
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used in several research projects. At the Cornell university, the AR-Drone has
been used for experiments in UAV visual autonomous navigation in structured
environments [6]. Moreover, machine learning approaches were applied to predict
the position errors of the UAV following a desired flight path [7]. Other research
groups used the drone as an experimental platform for autonomous surveillance
tasks [8], human-machine interaction [9], and even as a sport assistant [10], which
aids the athletes by providing them external imagery of their actions.

Starting to work with the drone might be time consuming, because one has to
solve several implementation and ‘low level’ issues. Moreover, the drone itself is
an unstable system and its control is not as easy as control of the ground robots.
We have used the AR-Drone prototypes since March 2010, and therefore, we
have gained experience with utilizing the drone as a platform for research and
education. During the last year, we have been contacted by several students, who
have been starting to use the AR-Drone in their projects. Most of them have
similar problems with drone control, sensory data processing and usage of the
provided software. Our aim is to help the AR-Drone users to quickly overcome
these issues.

The hardware and firmware of the platform is described in the next section,
which also provides basic information about the drone API. After that, we de-
scribe how we implemented the basic tasks of position control, object tracking,
and autonomous flight. The following section briefly summarizes experiments
the drone has been used for. The last section concludes benefits of the drone
usage in robotic education and research.

2 The AR-Drone platform

In this chapter, we make a brief introduction to the AR-Drone platform. We will
describe not only its hardware, but also the way it can be controlled.

2.1 Hardware

The AR-Drone (see Fig. 1) is an electrically powered quadcopter intended for
augmented reality games. It consists of a carbon-fiber support structure, plastic
body, four high-efficiency brushless motors, sensor and control board, two cam-
eras and indoor and outdoor removable hulls. The control board not only ensures
safety by instantly locking the propellers in case of a foreign body contact, but
also assists the user with difficult maneuvers such as takeoff and landing. The
drone operator can set directly its yaw, pitch, roll, and vertical speed and the
control board adjusts the motor speeds to stabilize the drone at the required
pose. The drone can achieve speeds over 5 m.s−1 and its battery provides enough
energy up to 13 minutes of continuous flight.

Drone control computer is based on the ARM9 processor running at 468MHz
with 128 MB of DDR RAM running at 200MHz. The manufacturer provides a
software interface, which allows to communicate with the drone via an ad-hoc
WiFi network. The API not only allows to set drone required state, but also



AR-Drone as a Robotic Platform 3

provides access to preprocessed sensory measurements and images from onboard
cameras.

Fig. 1: The AR-Drone quadcopter

The drone sensory equipment consists of a 6-degree-of-freedom inertial mea-
surement unit, sonar-based altimeter, and two cameras. The first camera with
approximately 75◦ × 60◦ field of view is aimed forward and provides 640 × 480
pixel color image. The second one is mounted on the bottom, provides color
image with 176× 144 pixels and its field of view is approximately 45◦ × 35◦.

While data from the IDG-400 2-axis gyro and 3-axis accelerometer is fused
to provide accurate pitch and roll, the yaw is measured by the XB-3500CV high
precision gyro. The pitch and roll precision seems to be better than 0.2◦ and the
observed yaw drift is about 12◦ per minute when flying and about 4◦ per minute
when in standby.

2.2 Software

The control board of the AR-Drone runs the BusyBox based GNU/Linux distri-
bution with the 2.6.27 kernel. Internal software of the drone not only provides
communication, but also takes care of the drone stabilization, and provides so-
called assisted maneuvers. The bottom camera image is processed to estimate
the drone speed relative to the ground, and therefore, the drone is more stable
than other quadcopters.

After being switched on, an ad-hoc WiFi appears, and an external computer
might connect to it using a fetched IP address from the drone DHCP server.
The external computer then can start to communicate with the drone using the
interface provided by the manufacturer. The interface communicates via three
channels, each with a different UDP port.

Over the command channel, a user controls the drone, i.e., requests it to
takeoff and land, change configuration of controllers, calibrate sensors, set PWM
on individual motors etc. However, the most used command sets the required
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pitch, roll, vertical speed, and yaw rate of the internal controller. The channel
receives commands at 30 Hz.

The navdata channel provides the drone status and preprocessed sensory
data. The status indicates, whether the drone is flying, calibrating its sensors,
the current type of altitude controller, which algorithms are activated etc. The
sensor data contain current yaw, pitch, roll, altitude, battery state and 3D speed
estimates. Both status and sensory data are updated at 30 Hz rate. Moreover, the
drone can run a simple analysis of the images from the frontal camera and search
for a specially designed tags in the images. In the case the tags are detected, the
navdata contains estimates of their positions.

(a) Bottom camera
picture in picture

(b) Bottom camera (c) Frontal camera picture in picture

Fig. 2: Images provided by the drone in various modes of operation
.

The stream channel provides images from the frontal and/or bottom cameras.
The frontal camera image is not provided in actual camera resolution, but it is
scaled down and compressed to reduce its size and speed up its transfer over
WiFi. As a result, the external computer obtains a 320× 240 pixel bitmap with
16bit color depth. A slight disadvantage of the camera system is that a user
cannot obtain both camera images at a time. Rather than that, the user has
to choose between bottom and forward camera or go for two picture in picture
modes, see Fig. 2. Switching the modes is not instant (takes ∼ 300 ms) and
during the transition time, the provided image contains invalid data.

Since the control board is accessible by telnet, the drone user can log in and
change settings of the onboard operating system and adjust configuration files
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of the drone internal controllers. Moreover, it is possible to cross-compile an
application for the ARM processor and run it directly on the AR-Drone control
board. In this case, one can access the drone cameras and onboard sensors di-
rectly without a delay caused by the wireless data transfer. Thus, one can achieve
faster control loops and experiment with a low level control of the drone. Even
when a custom application is running on the platform control board, the internal
controllers, which take care of the drone stability, can be active. However, the
memory and computational limits of the control board have to be taken into
account when developing an application, which should run onboard the drone.

For our purposes, we have created a simple application, which uses all three
aforementioned channels to acquire data, allows drone control by a wireless joy-
stick and performs a simple image analysis. This piece of freely available soft-
ware [11] serves as a base for more complex applications, which provide the drone
with various degrees of autonomy. The software does not require any nonstan-
dard libraries and works both under GNU/Linux and Windows environments.

3 Autonomous navigation

In this chapter, we will show how to implement several autonomous behaviours.
We will start by a simple position control, continue with hovering over a moving
object and traveling along a predefined path.
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Fig. 3: Coordinate system of the drone
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3.1 Dynamic model of the drone

In order to design controllers for the drone, it is desirable to know its dynamic
model parameters. Instead of modeling the drone like a standard quadrotor
helicopter, i.e., considering its propeller speeds as inputs and angles as outputs,
we model the drone including its internal controller. Since the internal controller
is able to set and keep the desired angles and vertical speed, we do not have to
deal with complexity of the drone model [12]. Instead of it, we model the drone
as a system, which has the desired pitch, roll, yaw rate, and vertical speed as its
input, and its actual angles, speed, and position as its states, see Fig. 4.

Since the position of the drone is a pure integration of its speeds, we can
further simplify the model, and consider only the yaw and speeds as its state
variables. Moreover, we can consider that the forward speed is given by the drone
pitch, and ignore the influence of other inputs. The same can be done for the
drone side speed and roll, yaw and yaw rate, and altitude and vertical velocity.
Therefore, we can decompose the drone dynamic model in four first- or second-
order dynamic systems and identify their parameters separately. This decoupled
model allows to design separate controllers for each such aforementioned tuple
of state and input variables.

Fig. 4: A structure of the drone model
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To identify the parameters of the forward speed-pitch model, we have let
the drone hover over a spot, then requested a -7.5◦ pitch and gathered the
drone navdata. From the gathered data, we have extracted sequences of required
pitch φ′

i, actual pitch φi, and forward velocity vi. Using the model in Fig. 4, we
established the following linear equations




φ1

φ2

...
φn


 =




φ0 φ′
0

φ1 φ′
1

...
...

φn−1 φ′
n−1




(
p1
p0

)
,

and calculated p1 and p0 by means of least squares. The parameters p3 and p2
can be calculated by a similar equation from the φi and vi. To verify the model
parameters, we compared the measured and simulated data, see Fig. 5.
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Fig. 5: Measured and simulated forward speed

To establish the remaining parameters of the dynamic model ( r0...3, y0,1,
s0,1 ), a similar procedure was performed.

One has to consider that the drone model parameters differ for indoor and
outdoor hulls. Moreover, the parameters vary slightly for different drones as well,
and therefore, it is recommended to perform the identification procedure for each
drone separately.

3.2 Position control

Since the model parameters were calculated, we can start with controller design.
Assume, that the drone is at a position (x, y, z), its yaw is φ, and we want
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to implement a controller, which moves it to a different position (xd, yd, zd)
with a yaw φd. In our drone model, neither the drone altitude z nor its yaw φ
are influenced by other state variables, and therefore, their controllers can be
designed independently.

The yaw subsystem has a very quick response, and therefore, a simple pro-
portional controller is sufficient. Altitude dynamics is a bit slower because the
drone inertia cannot be omitted. Therefore, we have implemented a simple PD
controller for the purpose of altitude stabilization. The vertical speed (i.e., the
differential channel) does not have to be estimated from height measurements, we
can rather use the vertical speed from the navdata provided by the drone. Since
both altitude and yaw subsystems contain a pure integrator, their controllers
do not have to contain an integration channel for achieving zero control error.
Therefore, the structure of both yaw and altitude controllers is quite simple, see
Fig. 6.

Fig. 6: Structure of the yaw and altitude controllers

When designing the position controller, we assumed, that the yaw rate (i.e.,
turning speed of the drone) will be small, and therefore, the pitch would influ-
ence only the forward speed and the roll only the sideward speed of the drone.
To reach a desired position (xd, yd), we first transform it to the coordinates rel-
ative to the drone (xr, yr). After that, we use the xr as an input value of the
pitch controller and yr as an input value for the roll controller. Not only have
these subsystems the same structure, but also their dynamics is similar, and
therefore, their controllers will be the same. Since we know the dynamics of the
system and have access to the current pitch and forward speed, we can easily
implement a linear controller, see Fig. 7. Note that the proportional feedback
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loop is implemented in the calculation of relative coordinates (xr, yr) from the
desired and current drone position.

Fig. 7: Structure of the pitch (and roll) controller

Since the model parameters are known, the gains of the individual controllers
can be chosen by any of the plethora methods. We have selected the controller
gains using the method of pole placement [13].

With this position controller, the drone is able to quickly reach the requested
position and stabilize itself without oscillations. However, there are several issues
regarding the position stability. The drone position is estimated by integration
of the navdata speeds and yaw, which are not precise. Therefore, the IMU-based
position estimation is subject to drift. When flying indoors at speeds about
1− 2 m.s−1, the overall precision of the position estimation is approximately
10% of the traveled distance. Moreover, the sonar-based altimeter error is higher
than 20%, and the error seems to be influenced by the type of the surface below
the drone. The yaw, which is measured by integrating a gyro signal, is also
subject to drift. Therefore, this kind of position estimation is not suitable for
long-term autonomous operation. However, the position controller works fine in
short term and is used as a base for other, more complex behaviours.

3.3 Hovering over an object

To keep the position estimation system stable, one needs an external reference.
One of the most simple ways is to place a distinct pattern on the ground, and
base the drone position estimation on the pattern image coordinates. This would
allow not only hovering over a fixed position, but also takeoff and landing on
a colored heliport, see Fig. 8. To do this, we just need to estimate the tracked
object coordinates and feed them to the position controller.

First of all, we have to measure the drone bottom camera field of view and
establish relation between image and real-world coordinates. Then, we have to
setup the blobfinding algorithm to search for the desired color pattern.

In autonomous operation, the bottom camera image is searched for continu-
ous blocks ‘blobs’ of a given color. The coordinates u, v of the pixel in the center
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of the largest blob are calculated. These coordinates are transformed to a real
world (xo, yo) coordinates (we assume that the tracked object altitude is zero)
by the equation

(
xo

yo

)
=

(
cosφ − sinφ
sinφ cosφ

)[(
0 ku
kv 0

)(
cu − u
cv − v

)
+

(
sin(θ)
sin(η)

)]
z +

(
x
y

)
, (1)

where x, y, z, φ, θ, η are drone current position, height, yaw, pitch and roll, cu
and cv are image center coordinates and ku, kv are camera parameters, see also
Fig. 3. The ku and kv are approximately equal to the ratio of camera field of
view to the camera resolution. Resulting object positions xo, yo are sent to the
drone position controller.

Fig. 8: AR Drone landing on a moving robot

This kind of position control works well at altitudes over 0.4 m. Below these
altitudes, the area viewed by the bottom camera is small and the tracked object
can be easily lost. Moreover, the air flow caused by the drone reflects from
the ground and affects drone behaviour. Therefore, it is desirable to hover in
higher altitudes and switch off the position control during takeoff and landing
maneuvers. Our experience shows that a reasonable altitude for object tracking
is over 1.5 m.

One could think that object tracking can be achieved by much simpler means
than the ones described above, e.g., the required pitch and roll can be directly
calculated from object image coordinates. Imagine such a controller in a situ-
ation, when an object is detected in the top part of the image and the drone
is requested to move forwards. To move forward, the drone is pitched down,
which causes the object to move further to the image top border, which causes
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even higher forward speed. This positive feedback loop produces oscillations and
makes the control unstable. Even when the controller would compensate for
drone pitch, tilting the drone usually causes it to lose the tracked object out
of sight. Due to these facts, the described position control is more reliable than
simpler methods.

3.4 Visual based navigation

Another way to localize the drone in long term is to use the forward camera
and some of the monocular-based navigation methods used for ground based
robots. We have implemented a map and replay method described in [14]. The
method relies on the Speeded Up Robust Features (SURF) [15] extracted from
the frontal camera image. In this method, the drone is first guided by a human
through an environment and creates a landmark map. After that, the map is
used by the drone to repeatedly travel the taught path. The path is divided in
several straight segments, each with it’s own submap.

When autonomously traversing a particular segment, the currently perceived
image features are matched to the mapped ones to estimate the heading relative
to the segment. The distance traveled along the segment is estimated purely
by dead reckoning. The navigation method is provably stable for nondegenerate
polygonal paths, since the heading corrections can suppress the position uncer-
tainty originating from the dead reckoning. The advantage of the method is its
simplicity — the heading is determined by a simple histogram voting procedure
— and robustness.

Fig. 9: Autonomous visual navigation of the drone

For the purpose of the autonomous navigation, the position control was
slightly changed. When traversing a particular segment, the height control works
as described in Section 3.2, the input for the yaw controller is determined from
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the image information, the roll position controller is disabled, and the pitch
controller input equals the currently traveled segment length. Due to the low
precision of the IMU based distance estimation, the drone localization error is
high. However, the localization error does not diverge and is kept within sufficient
limits allowing the drone to autonomously navigate along the taught path.

4 Experiments

This section briefly describes two experiments performed with the drone. Videos
of these experiments are available on our youtube channel1. In the first experi-
ment, the drone was used as a mobile external localization system. The second
experiment was concerned with performance of the AR-Drone in an autonomous
surveillance task.

4.1 Mobile localization system

Since the drone is capable to determine positions of distinct colored objects from
its bottom camera image, we have used it as an external localization system. In
our experiment, we tested a formation control method [16], which allows to
adaptively change formation shape according to the environment constraints.
Our control method is based on the leader-follower approach [17], where one of
the robots (the leader) plans and executes the path, while the following robots
keep a certain relative position to the leader. However, the followers might be
separated from the leader by obstacles, and therefore, unable to establish their
relative position accordingly. Using GPS to solve this problem would not be
possible, because its accuracy is insufficient to keep a precise formation shape.
To solve this, the leading robot carried the drone, which took off and provided
localization when needed. Therefore, the drone was hovering above the leader
and provided the followers with their positions relative to the formation leader.
Using the provided and desired positions, the followers adjusted their speeds to
maintain the formation.

Equation (1) shows that measurement of the drone altitude z considerably
influences the results of the position estimation. Hovering over the leading robot
was achieved by the method described in Section 3.3. To calculate relative fol-
lower positions, one has to measure heading of the leader. Moreover, the followers
need to know their heading to compute their speed adjustments. Therefore each
robot is distinguished by two rectangular areas with the same color, covering the
top of it, see Fig. 10.

Since the drone altimeter is imprecise, we had to estimate the drone altitude
from the leader top covering, in particular from the distance of its colored rectan-
gles in image coordinates. This way, the altitude estimation error was about 3 %
and the follower position estimation error was approximately equal to 0.05 m.

1 http://www.youtube.com/imrfel
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Fig. 10: The drone taking off from the formation leader

The mobile robot formation used in the experiment was composed of two
followers and a leader, which carried a heliport with the drone. The following
robots did not use odometry or any additional position estimation system.

4.2 Autonomous Surveillance

Consider an autonomous surveillance scenario, where the task of the drone is
to monitor a set of objects of interest (OI). In particular, the drone has to fly
autonomously over the objects and use its bottom camera to capture the OI
images as frequently as possible. One of the possible solutions is to formulate
the task as Traveling Salesman Problem [18], establish the order in which the
OIs should be visited and use the navigation method described in Section 3.4 to
move between the OIs.

Fig. 11: The drone taking photo of the OI
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However, the drone lacks precise position reference and might miss the desired
OI. The frequency of goal visits then depends not only on the path length, but
also as on the probability of arriving at a sufficient distance to the particular
OI to take its photo. Therefore, one should plan a path over the OIs while
considering the uncertainty of drone position estimation over the IOs.

As noted in Section 3.4, the drone position uncertainty is increasing in the
direction of its movement and decreasing in the perpendicular direction [14].
Therefore, we have proposed to place an auxiliary waypoint before each OI and
used a SOM based approach [8] to plan the sequence of waypoints the drone
should pass through.

Fig. 12: Planned paths considering and not considering the position uncertainty
.

We tested the näıve and the planning method with auxiliary waypoints for
four OIs, see Fig. 12. The drone was then taught the planned paths and the
success rate of goal visits was measured. The experiment showed that consid-
ering the localization uncertainty in path planning significantly increases the
probability of goal visits [8].

5 Conclusion

This paper introduces the AR-Drone quadrotor helicopter as a platform uti-
lizable in robotic research. Not only the hardware of the drone, but also its
software, and communication are discussed. We described how to model this
quadcopter mathematically, how to establish the model parameters, and how to
use the model in position controller design. Moreover, we have shown how to
implement object tracking and autonomous flight. We also presented a freely
available software package, which allows to control the drone from a PC, obtain
sensory data and run basic image analysis. Using this application, researchers
and students can quickly overcome the initial problems and focus on more ad-
vanced issues. To further demonstrate the drone utility in robotic research, we
present two experiments in which the drone has been used.
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