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Abstract

Heuristic search guides the exploration of states via heuristic functions h estimating remaining cost. Symbolic
search instead replaces the exploration of individual states with that of state sets, compactly represented using
binary decision diagrams (BDDs). In cost-optimal planning, heuristic explicit search performs best overall,
but symbolic search performs best in many individual domains, so both approaches together constitute the
state of the art. Yet combinations of the two have so far not been an unqualified success, because (i) h must
be applicable to sets of states rather than individual ones, and (ii) the different state partitioning induced
by h may be detrimental for BDD size. Many competitive heuristic functions in planning do not qualify for
(i), and it has been shown that even extremely informed heuristics can deteriorate search performance due
to (ii).

Here we show how to achieve (i) for a state-of-the-art family of heuristic functions, namely potential
heuristics. These assign a fixed potential value to each state-variable/value pair, ensuring by LP constraints
that the sum over these values, for any state, yields an admissible and consistent heuristic function. Our key
observation is that we can express potential heuristics through fixed potential values for operators instead,
capturing the change of heuristic value induced by each operator. These reformulated heuristics satisfy (i)
because we can express the heuristic value change as part of the BDD transition relation in symbolic search
steps. We run exhaustive experiments on IPC benchmarks, evaluating several different instantiations of po-
tential heuristics in forward, backward, and bi-directional symbolic search. Our operator-potential heuristics
turn out to be highly beneficial, in particular they hardly ever suffer from (ii). Our best configurations
soundly beat previous optimal symbolic planning algorithms, bringing them on par with the state of the art
in optimal heuristic explicit search planning in overall performance.
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1. Introduction

Classical planning deals with problems of finding a sequence of operators (or actions) leading from an initial
state to one of the goal states in a fully observable deterministic environment. In this paper, we are concerned
with two families of methods designed to solve such problems: heuristic explicit search and symbolic search.
Heuristic explicit search guides the exploration of states using heuristic functions that estimate remaining5

cost. A∗ search (Hart et al., 1968) guarantees cost-optimality—it returns a solution whose summed-up
operator cost is minimal if the heuristic is admissible. The design of admissible heuristic functions has been
intensively investigated in planning (e.g., Haslum & Geffner, 2000; Edelkamp, 2001; Helmert & Domshlak,
2009; Helmert et al., 2014; Pommerening et al., 2014; Seipp & Helmert, 2018), and planning algorithms based
on these techniques are state-of-the-art for many benchmark domains in cost-optimal planning.10

In contrast to heuristic explicit search, symbolic search replaces the exploration of individual states with
that of state sets, compactly represented using binary decision diagrams (BDDs) (Bryant, 1986). The primary
operations needed for search can be implemented at the level of BDDs, in time polynomial in the size of
the BDDs. This greatly improves exhaustive (blind) search, as it allows to represent and manipulate large
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state-space fractions efficiently (Burch et al., 1992). Thus, symbolic search is very effective whenever large15

portions of the state space need to be traversed (Speck et al., 2020b; Speck & Katz, 2021). In cost-optimal
planning, algorithms of this kind (Edelkamp & Helmert, 1999; Edelkamp & Kissmann, 2009, 2011; Torralba
et al., 2017) slightly lag behind heuristic explicit search in terms of overall performance across benchmark
domains, but are highly complementary and beat heuristic explicit search in a range of benchmark domains.
In short, both approaches together constitute the state-of-the-art in cost-optimal planning.20

In principle, the two approaches are orthogonal enhancements of the same vanilla search algorithm—
state-space search—and so a natural idea is to combine the two. Indeed that idea has been presented decades
ago in the BDDA∗ algorithm (Edelkamp & Reffel, 1998; Edelkamp, 2002), and has received substantial
attention ever since, either using heuristics to enhance symbolic search (Edelkamp, 2002; Hansen et al.,
2002; Jensen et al., 2002, 2008; Edelkamp et al., 2012, 2015), using symbolic search to compute informative25

heuristics (Edelkamp, 2002, 2006; Franco et al., 2017; Torralba et al., 2018), or both (Kissmann & Edelkamp,
2011; Torralba et al., 2014a, 2016).

Yet, this combination has not been an unqualified success. For a heuristic function h to be usable in
heuristic symbolic search, (i) h must be applicable to sets of states rather than individual ones, as evaluating
the heuristic on each state individually would defeat the purpose of symbolic search. Furthermore, as heuristic30

symbolic search requires to distinguish states with different heuristic values, (ii) the partitioning of states into
BDD-represented sets is different when using h, which may be detrimental for BDD size. Condition (i) has
been achieved for some strong heuristics in planning, in particular for pattern databases (PDBs) (Kissmann &
Edelkamp, 2011; Torralba et al., 2018). But it remains elusive for many other competitive heuristic functions.
Regarding (ii), it has been shown that even extremely informed heuristics can exponentially deteriorate search35

performance (Speck et al., 2020a), increasing BDD size to the extent of massively outweighing the reduction
in search space size.

Due to all this, symbolic bi-directional blind search, without heuristics, is at this time considered the
dominant symbolic search approach, and the use of heuristic search in this context has lost traction.

Here we challenge this trend by showing that potential heuristics (Pommerening et al., 2015), denoted in40

what follows by hP, yield fresh synergy between heuristic and symbolic search. We focus on the simplest kind
of potential heuristics (i.e. those of dimension one), which assign a fixed potential value P(f) to each fact f
(i.e., each state-variable/value pair) in a given planning task, and obtain the heuristic value hP(s) of a state
s as the sum hP(s) =

∑
f∈s P(f) of potential values of the facts f true in s. It is ensured via linear program

(LP) constraints over the fact potentials that hP is an admissible and consistent heuristic function.45

This family of heuristic functions does not per se satisfy condition (i). Here we show how to reformulate
them in a way that addresses this problem. Our key observation is that we can express potential heuristics
through a fixed operator potential value Q(o) for each of the task’s operators o instead, capturing the change
of heuristic value hP(s′) − hP(s) for any state transition s → s′ induced by o. We show that, under a mild
assumption on the planning task structure (discussed below), hP(s) for a state s reached via an operator50

sequence ⟨o1, . . . , ok⟩ is equal to the value of hP in the initial state plus the sum Q(o1)+ · · ·+Q(ok) of operator
potentials. This heuristic function satisfies (i) in the sense that we can express the heuristic value change as
part of the BDD transition relation (TR) in symbolic search steps. Specifically, this reformulated potential
heuristic fits into the symbolic heuristic search algorithm GHSETA∗ (Jensen et al., 2008), which partitions
TRs by both their costs and the change of heuristic values they induce.55

The assumption required for the above is that every state variable V affected by the effect of an operator
o is constrained by o’s precondition. This is true in many standard planning benchmarks, but is of course not
true in general. For input tasks that do not satisfy this assumption, our reformulation can also be applied
and still yields admissible heuristics, but these are path-dependent and inconsistent, necessitating node re-
opening in search. Therefore, they do not tend to work well in practice (Fǐser et al., 2022a,b). For this reason60

and because this setting unnecessarily complicates the theory, we discuss them only in Appendix A. We
present two better remedies. First, disambiguations (Alcázar et al., 2013; Fǐser et al., 2020) allow to weaken
the assumption, and also yield much stronger potential heuristics. Second, one can use task transformations
to transition normal form (Pommerening & Helmert, 2015), where necessary, to achieve the assumption.

Another technical difficulty is that the operator potentials are real (floating-point) numbers, which can65

lead to rounding and precision issues. Näıvely rounding these values may lead to inconsistent heuristics. We
show that this can instead be dealt with by extending the potential-heuristic LP to a mixed-integer linear
program (MIP) that forces the operator potentials to be integers.
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Putting the above pieces together, we obtain a new heuristic function for forward symbolic heuristic
search: the forward search direction is enforced as computing hP(s) requires to know the operator sequence70

⟨o1, . . . , on⟩ leading to s. This is at odds with backward search and bi-directional search, which are traditional
key strengths of symbolic search. However, as it turns out, our approach applies to such searches as well,
through a different reformulation where ⟨ok+1, . . . , on⟩ are the operators on the path from the search state to
the goal node, and hP(s) equals the value of hP in the initial state plus the sum of Q(oi) over ok+1 to on, i.e.,
it turns out summing operator-potentials over sequences of operators works both in forward and backward75

direction.
This equality for the backward direction requires not only the mild assumption discussed above, but

additionally requires the strong assumption that there is a single unique goal state. One can, again, apply
our approach anyway to obtain path-dependent and inconsistent heuristics, but this does not always pay off
in practice. What turns out to be effective instead is to partition the goal states over their heuristic values80

at the beginning of symbolic backward search. The operator-potentials then work analogously to forward
search. This in turn extends to symbolic bi-directional search where we can choose any combination of
operator-potential or blind heuristics for each search direction.1

We run exhaustive experiments on IPC benchmarks, evaluating several different instantiations of potential
heuristics in forward, backward, and bi-directional symbolic search, and comparing these configurations to the85

state-of-the-art in cost-optimal planning. Our operator-potential heuristics turn out to be highly beneficial.
They hardly ever suffer from the risk (ii) of possibly increased BDD sizes. The key observations are:

• Our combination of symbolic search with potential heuristics vastly outperforms each of its components,
showing that this combination is (much) more than the sum of its parts.

• Our best configurations soundly beat previous optimal symbolic planning algorithms, establishing a90

new state-of-the-art for this method family.

• Our best configurations furthermore bring symbolic search on par with the state of the art in optimal
heuristic explicit search planning in overall performance, while maintaining the high level of comple-
mentarity. Thus we improve the state of the art in cost-optimal planning overall.

This paper is a combination and extension of two of our previous publications (Fǐser et al., 2022a,b). In95

(Fǐser et al., 2022a), we introduced operator-potential heuristics and we showed how to efficiently combine
them with the forward symbolic search. In (Fǐser et al., 2022b), we addressed the application of operator-
potential heuristics in the backward and bi-directional symbolic search resulting in a path-dependent incon-
sistent but admissible variant of operator-potential heuristics for the backward direction. In this paper, we
unify the formulations of operator-potential heuristics from those two previous publications, and we present100

a coherent description of operator-potential heuristics and their integration to forward, backward, and bi-
directional symbolic search. Moreover, we extend these findings by showing how to turn path-dependent
(inconsistent) variant of operator-potential heuristics for the backward search into heuristics that are con-
sistent, which leads to a significant improvement of the backward symbolic search. Lastly, we present a
comprehensive and detailed experimental analysis of virtually all aspects of operator-potential heuristics and105

their integration into symbolic search.
The paper is organized as follows. We next give the necessary background on planning framework and

notations, potential heuristics, and symbolic search (Section 2). We then introduce our reformulated operator-
potential heuristics, analyzing possible designs for forward and backward search (Section 3). We show that
these heuristics can easily be used in symbolic search (Section 4). We give a detailed empirical evaluation110

(Section 5) before concluding the paper (Section 6).
For ease of reading, we limit our analysis in Section 3 to the case where all effect variables are constrained

by the precondition; Appendix A discusses operator-potential heuristics not making that assumption.

1One may consider to perform symbolic heuristic backward search simply by reversing the planning task and applying our
techniques for symbolic heuristic forward search. But this would require to enumerate individual goal states, or to transform
the task to the transition normal form with a single goal state. The former is obviously ineffective, and the latter is ineffective
for symbolic search as we show in the experimental evaluation in Section 5.2.
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2. Background

We consider the finite domain representation (FDR) of planning tasks (Bäckström & Nebel, 1995). An115

FDR planning task Π is specified by a tuple Π = ⟨V,O, I, G⟩. V is a finite set of variables, each variable
V ∈ V has a finite domain dom(V ). A fact ⟨V, v⟩ is a pair of a variable V ∈ V and one of its values
v ∈ dom(V ). The set of all facts is denoted by F = {⟨V, v⟩ | V ∈ V, v ∈ dom(V )}, and the set of facts of
variable V is denoted by FV = {⟨V, v⟩ | v ∈ dom(V )}. A partial state p is a variable assignment over some
variables vars(p) ⊆ V. We write p[V ] for the value assigned to the variable V ∈ vars(p) in the partial state p.120

We also identify p with the set of facts contained in p, i.e., p = {⟨V, p[V ]⟩ | V ∈ vars(p)}. A partial state s is
a state if vars(s) = V. I is an initial state. G is a partial state called goal, and a state s is a goal state
iff G ⊆ s. S denotes the set of all states. Let p, t be partial states. We say that t extends p if p ⊆ t.
O is a finite set of operators, each operator o ∈ O has a precondition pre(o), prevail condition prv(o),

and effect eff(o), which are partial states over V, and a cost cost(o) ∈ R+
0 . For every operator o ∈ O it holds125

that vars(pre(o)) ⊆ vars(eff(o)), and vars(pre(o))∩ vars(prv(o)) = ∅, and vars(prv(o))∩ vars(eff(o)) = ∅, i.e.,
preconditions are defined only over affected variables, preconditions and prevail conditions are defined over a
different set of variables, and prevail conditions cannot be defined over any affected variable. We also assume
that pre(o)[V ] ̸= eff(o)[V ] for every V ∈ vars(pre(o)) ∩ vars(eff(o)).

An operator o is applicable in a state s iff prv(o) ∪ pre(o) ⊆ s. The resulting state of applying an130

applicable operator o in a state s is another state oJsK such that oJsK[V ] = eff(o)[V ] for every V ∈ vars(eff(o)),
and oJsK[V ] = s[V ] for every V ∈ V \ vars(eff(o)).

Given non-negative integers k, n ∈ N0, [k, n] denotes the set {k, . . . , n} for k ≤ n, and [k, n] is defined as
an empty set for k > n. Moreover, [n] denotes a shorthand for [1, n]. A sum over an empty set is considered
to be zero.135

A sequence of operators π = ⟨o1, . . . , on⟩ is applicable in a state s0 if there are states s1, . . . , sn such that
oi is applicable in si−1 and si = oiJsi−1K for i ∈ [n]. The resulting state of this application is πJs0K = sn and
cost(π) =

∑
i∈[n] cost(oi) denotes the cost of this sequence of operators. We also consider an empty sequence

of operators π which is applicable in every state s and πJsK = s.
A sequence of operators π = ⟨o1, . . . , on⟩ is called an s-t-path if there exist states s and t such that π is140

applicable in s and πJsK = t. A sequence of operators π is called an s-plan if it is applicable in the state s
and πJsK is a goal state, and I-plan is called simply a plan. An s-t-path (s-plan, plan) π is called optimal
if its cost is minimal among all s-t-paths (s-plans, plans).

A state s is forward reachable if there exists an I-s-path, otherwise we say it is forward unreachable.
A state s is backward reachable if there exists an s-plan, otherwise we say it is backward unreachable.145

An operator o is forward (backward) reachable iff it is applicable in some forward (backward) reachable state.
The set of all forward reachable states is denoted by Sfw, the set of all I-s-paths for all s ∈ Sfw is denoted
by Efw, the set of all backward reachable states is denoted by Sbw, and the set of all s-plans for all s ∈ Sbw
is denoted by Ebw. A state s ∈ Sfw \ Sbw that is forward reachable but not backward reachable is called
forward dead-end (i.e., forward dead-ends s are states that are reachable from the initial state, but there150

does not exist any s-plan), and a state s ∈ Sbw \ Sfw that is backward reachable but not forward reachable is
called backward dead-end (i.e., backward dead-ends s are states for which there exist an s-plan, but they
are not reachable from the initial state).

A forward heuristic hfw : Sfw 7→ R∪{∞} estimates the cost of optimal s-plans for all forward reachable
states s ∈ Sfw. The optimal forward heuristic h⋆

fw(s) maps each forward reachable state s to the cost of155

the optimal s-plan or to ∞ if s is a forward dead-end state. A forward heuristic hfw is called

(a) forward admissible if hfw(s) ≤ h⋆
fw(s) for every forward reachable state s ∈ Sfw;

(b) goal-aware if hfw(s) ≤ 0 for every forward reachable goal state s; and

(c) forward consistent if hfw(s) ≤ h(oJsK)+cost(o) for all forward reachable states s ∈ Sfw and operators
o ∈ O applicable in s.160

A backward heuristic hbw : Sbw 7→ R ∪ {∞} estimates the cost of optimal I-s-paths. The optimal
backward heuristic h⋆

bw(s) maps each backward reachable state s to the cost of the optimal I-s-path or to ∞
if s is a backward dead-end. A backward heuristic hbw is called

(a) backward admissible if hbw(s) ≤ h⋆
bw(s) for every backward reachable state s ∈ Sbw;
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(b) init-aware if hbw(I) ≤ 0;165

(c) backward consistent if hbw(oJsK) ≤ hbw(s) + cost(o) for all backward reachable states s ∈ Sbw and
operators o ∈ O such that o is applicable in s and oJsK is backward reachable.

Note that we allow negative heuristic values as is usual in works on potential heuristics, because it
allows to find more informed potential heuristics (e.g., Pommerening et al., 2015), and we can treat negative
estimates as zeros during the search. Admissibility and consistency is usually defined for all states whereas170

here we define them for forward and backward reachable states only. Clearly, if a forward (backward)
heuristic is goal-aware (init-aware) and forward (backward) consistent, then it is also forward (backward)
admissible. Sometimes we omit the adjective forward or backward when it is clear from the context. In
particular, admissibility and consistency of a forward heuristic will always mean forward admissibility and
forward consistency, respectively, and admissibility and consistency of a backward heuristic will always mean175

backward admissibility and backward consistency, respectively.
We also consider heuristic functions over all states, h : S 7→ R ∪ {∞}. Nevertheless, admissibility

and consistency is used only for forward and backward heuristics, goal-awareness is used only for forward
heuristics, and init-awareness only for backward heuristics.

In the context of heuristic search, h-value of a state node s refers to the heuristic value of s, g-value to180

the cost of the sequence of operators leading to s, and f -value is the sum of g-value and the maximum of
h-value and zero (since we allow negative h-values).

We define heuristics as state-dependentmeaning they are functions mapping states to numbers. We also
deal with path-dependent heuristics that map sequences of operators to numbers, i.e., a path-dependent
heuristic can return different numerical values for the same state depending on the sequence of operators185

that leads to it. The exact definition of path-dependent heuristics is provided in Appendix A as we deal
with them formally there.

A set of facts M ⊆ F is a mutex if M ̸⊆ s for every forward reachable state s ∈ Sfw. We will leverage
prior work on so-called disambiguation (Alcázar et al., 2013; Fǐser et al., 2020). Given a variable V ∈ V and
a partial state p, a set of facts F ⊆ FV is called a disambiguation of V for p if for every forward reachable190

state s ∈ Sfw such that p ⊆ s it holds that F ∩ s ̸= ∅ (i.e., ⟨V, s[V ]⟩ ∈ F ).
Disambiguation allows us to infer which facts cannot be part of any forward reachable state extending

a given partial state. For example, suppose we have three variables Va, Vb and Vc each having two facts:
a1, a2 ∈ FVa

, b1, b2 ∈ FVb
and c1, c2 ∈ FVc

. Moreover, suppose there is no forward reachable state containing
a1 and b1 at the same time, or b2 and c2 at the same time, i.e., {a1, b1} and {b2, c2} are mutexes. Now, given195

a partial state p = {b1, c1}, we can infer from the aforementioned mutexes that there is no forward reachable
state extending p containing a1 because every such state already contains b1. Therefore, the set {a2} is a
disambiguation of Va for p. If we consider the variable Vb that is already defined in p, then we get that the
set {b1} is a disambiguation of Vb for p, because we can safely say that any forward reachable state extending
p must contain b1. As another example, consider a partial state p′ = {a1, c2}. In this case, we have that the200

empty set ∅ is a disambiguation of Vb for p′, because we can infer from the mutexes that neither b1 or b2
can be part of any forward reachable state extending p′. Therefore, we can conclude that p′ itself is a mutex
as there is no forward reachable state (i.e., variable assignment over all variables) containing p′. In other
words, disambiguation tells us which facts can potentially appear in forward reachable states extending a
given partial state. Note that disambiguations are allowed to overapproximate these sets which is necessary205

because we are usually not able to find a complete set of mutexes—there can be exponentially many of them,
and it is as hard as planning to prove that a given set of facts is mutex (Fǐser & Komenda, 2018).

Clearly, every FV is a disambiguation of V for all possible partial states, and if ⟨V, v⟩ ∈ p then {⟨V, v⟩} is
a disambiguation of V for p. Moreover, if the disambiguation of V for p is an empty set (for any V ), then all
states extending p are unreachable. Therefore, we can use empty disambiguations to determine unsolvability210

of planning tasks (if G extends p), or to prune unreachable operators (if a precondition or prevail condition
of the operator extends p). So, from now on we will consider only non-empty disambiguations, and we will
assume that, for every partial state p and a variable V ∈ vars(p), the disambiguation of V for p is exactly
{⟨V, p[V ]⟩}.

Fǐser et al. (2020) showed how to use mutexes to find disambiguations, so here we will assume we already215

have disambiguations inferred. Given an operator o ∈ O, Do(V ) denotes a disambiguation of V for pre(o) ∪
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prv(o), and DG(V ) denotes a disambiguation of V for the goal G. Note that as per our assumption above,
we have that Do(V ) = {⟨V, v⟩} for every ⟨V, v⟩ ∈ pre(o)∪prv(o), and DG(V ) = {⟨V, v⟩} for every ⟨V, v⟩ ∈ G.

A planning task Π is in Transition Normal Form (TNF) if (i) vars(pre(o)) = vars(eff(o)) for every o ∈ O
and (ii) the goal is a fully defined state. Here, we are interested only in the first condition, so we say that220

the planning task Π is normalized if vars(pre(o)) = vars(eff(o)) for every o ∈ O. From now on, we assume
the given planning task is normalized. This simplifies the presentation and proofs, but we discuss the general
case in Appendix A.

Every planning task can be normalized in polynomial time by introducing new auxiliary zero-cost op-
erators, which grow the representation only polynomially (Pommerening & Helmert, 2015), and it can be225

further improved with disambiguations (Fǐser et al., 2020). Unfortunately, this transformation turns out to
be detrimental to symbolic search as we show in Section 5.2.

However, we can also use a more straightforward “multiplication” method that, for every operator o ∈ O
and every of its affected variable not appearing in its precondition V ∈ eff(o)\pre(o), enumerates all possible
values of V and creates the corresponding operators. This method can be improved with disambiguations as230

we do not need to enumerate all values of V , but we can consider only the disambiguation Do(V ). It turns
out that, despite its worst-case exponential increase in task size, it very rarely happens in our benchmarks
that a task cannot be transformed with this method, and it has a good synergy with the symbolic search.

2.1. Background on Potential Heuristics

Potential heuristics (Pommerening et al., 2015, 2017) are defined as weighted sums over a set of simple235

state features that correspond to conjunction of facts. The dimension of a feature is the number of facts in
the corresponding conjunction. We consider here the simplest variant, one-dimensional potential heuristics
(also sometimes called atomic potential heuristics), where all features are single facts. It assigns a numerical
value to each fact, and the heuristic value for a state s is then simply a sum of the potentials of all facts in s.

Definition 1. Let Π denote a planning task with facts F . A potential function is a function P : F 7→ R.240

A potential heuristic for P maps each state s ∈ S to the sum of potentials of facts in s, i.e.,

hP(s) =
∑
f∈s

P(f). (1)

Moreover, we use hPfw to denote hP restricted to forward reachable states, i.e., hPfw(s) = hP(s) for every forward
reachable state s ∈ Sfw.

Now we can state sufficient conditions for the potential heuristic to be forward consistent, goal-aware, and
forward admissible, which we will need later on. We use the formulation using disambiguation previously245

introduced by Fǐser et al. (2020) and adapted to our notation and the assumption that we have a normalized
planning task. In contrast to the prior formulation (Fǐser et al., 2020, Theorem 7), we simplify the condition
ensuring forward consistency (Equation (3) below), because we assume we have a normalized planning task
where vars(pre(o)) = vars(eff(o)) for every o ∈ O, i.e., for every affected variable V ∈ vars(eff(o)) we know
exactly what is the value of V in the precondition of o (and thus also in the state where o is applicable).250

Theorem 2. Let Π = ⟨V,O, I, G⟩ denote a normalized planning task with facts F , and let P denote a
potential function. If ∑

V ∈V
max

f∈DG(V )
P(f) ≤ 0 (2)

and for every operator o ∈ O it holds that∑
f∈pre(o)

P(f)−
∑

f∈eff(o)

P(f) ≤ cost(o), (3)

then hPfw is goal-aware, forward consistent, and forward admissible.
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Equation (2) ensures goal-awareness, and Equation (3) ensures forward consistency. Note that Equa-255

tion (2) uses the disambiguation DG(V ) because we do not need to consider all values of every variable not
appearing in the goal G, but just those that can be part of a forward reachable goal state. In practice, we
can obtain potentials as a solution to a linear program (LP) with constraints corresponding to conditions
from Theorem 2 (Pommerening et al., 2015) as follows.

1. For each f ∈ F , we create a (real-valued) variable P(f).260

2. To ensure goal-awareness, we use the constraint Equation (2). The maximization in Equation (2) can
be transformed into a set of linear inequality constraints in a standard way: For every variable V ∈ V,
we create an auxiliary real-valued variable XV , then for every V ∈ V and f ∈ DG(V ), we add the
constraint P(f) ≤ XV , and finally we replace Equation (2) with the constraint

∑
V ∈V XV ≤ 0.

3. To ensure consistency, we add the constraint Equation (3) for every operator o ∈ O.265

Any solution of such LP for any objective function results in a goal-aware and forward consistent potential
function. Since we can choose any objective function, we can look for potential heuristics maximizing the
heuristic estimate for the initial state (Pommerening et al., 2015), we can maximize the average heuristic
estimates for all (syntactic) states S (Seipp et al., 2015), use mutexes to disregard some states that are not
reachable (Fǐser et al., 2020), or we can even combine some of the above. For example, we can construct a270

LP so that we obtain a potential heuristic that maximizes hPfw(I) while maximizing the average estimate over
all states (Fǐser et al., 2020).

2.2. Background on Symbolic Search

While explicit state-space search algorithms operate on individual states, symbolic search (McMillan,
1993) works on sets of states compactly represented as Binary Decision Diagrams (BDDs) (Bryant, 1986).275

BDDs are an efficient data-structure to represent Boolean functions {0, 1}n 7→ {0, 1} in the form of a directed
acyclic graph. A set of states S ⊆ S is represented as a BDD via its characteristic function S 7→ {0, 1}
assigning 1 to states that belong to S and 0 to states that do not belong to S. Note that this assumes a
binary encoding of states. We use the standard representation and variable ordering used in previous works
on symbolic search for classical planning (Kissmann & Edelkamp, 2011; Torralba et al., 2017). The size of280

a BDD B, denoted as |B|, refers to the number of nodes in B. The advantage of using this representation
comes from the fact that BDDs can be exponentially smaller than the number of states they represent.

Once we have sets of states represented as BDDs, we can use operations on BDDs to operate with sets of
states without enumerating them one by one. Operations like the union (∪), intersection (∩), and complement
of sets of states correspond to the disjunction (∨), conjunction (∧), and negation (¬) of their characteristic285

functions, respectively. For example, if we have two BDDs B1 and B2, representing sets of states S1 and S2,
the operation B1 ∧ B2 results in a BDD which represents S1 ∩ S2. These operations take only polynomial
time in the size of the input BDDs O(|B1||B2|), which enables efficient manipulation of large sets of states.

To perform symbolic search, the operators of the planning task are represented as transition relations
(TRs), also using BDDs. A TR of an operator o is a characteristic function To : S × S 7→ {0, 1} that290

represents all pairs of states ⟨s, oJsK⟩ such that o is applicable in s. Having a TR To for every operator o ∈ O,
we can construct a TR representing all operators with the same cost c as Tc =

∨
o∈O,cost(o)=c To. That is, Tc

represents all pairs of states ⟨s, s′⟩ such that s′ can be reached from s by applying some operator with cost
c. As the size of Tc may be exponential in the number of operators with cost c, in practice, it is often a good
idea to use disjunctive partitioning to keep the size at bay (Jensen et al., 2008; Torralba et al., 2013, 2017).295

Moreover, mutexes can be used for a more accurate approximation of reachable states (Torralba & Alcázar,
2013; Torralba et al., 2017).

Having a representation for sets of states as well as sets of operators, one can efficiently perform forward
search by iteratively applying the image operation starting with the BDD representing the initial state.
Given a BDD S representing a set of states and a TR Tc, image(S, Tc) computes the set of successor states300

reachable from any state in S by applying any operator represented by Tc. By using a separate TR per
operator cost c, one can easily keep track of the cost of reaching a state. If Sg represents a set of states
reachable with cost g, then all states in image(Sg, Tc) are reachable with a cost of g + c. By repeatedly
applying this operation, one can enumerate all states, classified into sets S0, S1, . . . according to the distance
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from the initial state. Whenever the representation of each Sg is compact, one can get exponential gains305

with respect to explicit-state search (Edelkamp & Kissmann, 2008).
For the search in the backward direction, one can start with the BDD representing all goal states and use

the operation pre-image instead of image, i.e., pre-image(S, Tc) computes the set of all predecessor states S′

from which a state in S can be reached by applying an operator represented by Tc. Torralba et al. (2017)
provide a comprehensive description of how to efficiently implement image and pre-image operations.310

The most prominent implementation of symbolic heuristic search in the context of automated planning
is BDDA∗ (Edelkamp & Reffel, 1998) which is a variant of A∗ (Hart et al., 1968) using BDDs to represent
sets of states. Like A∗, BDDA∗ expands states by ascending order of their f -value. To take advantage of
the symbolic representation, BDDA∗ represents all states with the same g and h value in a single BDD Sg,h

(disjunctive partitioning of Sg,h can also be used). Given a set of states Sg,h and a TR Tc, the g-value of315

the resulting set of successor states image(Sg,h, Tc) is simply g + c. However, these successor states have to
be split according to their h-value. This can usually be performed efficiently with, e.g., symbolic pattern
databases (Kissmann & Edelkamp, 2011), by partitioning all states into BDDs Sh, where each Sh represents
the set of all states with the heuristic value h. Then a conjunction of the successor states and a set Sh will
give us the sub-set of successor states with heuristic value h. To fully partition a set of states according to320

their heuristic value, we then need to compute such a conjunction for every partition Sh.
GHSETA∗ (Jensen et al., 2008) encodes the heuristic function as part of the transition relation, creating

multiple TRs depending on the impact of the operators on heuristic value. That is, we need a function
δh : O 7→ R mapping operators to numbers so that if the heuristic value for the state s is h(s) and the
operator o ∈ O is applicable in s, then h(oJsK) = h(s) + δh(o) is the heuristic value for the successor325

state oJsK. Then we can partition operators into TRs not only by their costs but also by the change of the
heuristic value δh(o) they induce, i.e., instead of having a TR Tc for every operator with the cost c, we have
a TR Tc,q for every operator cost c and every possible value q = δh(o). With this approach, computing g
and h-values of successor states is much more straightforward than in the previous case: image(Sg,h, Tc,q)
directly results in the BDD Sg+c,h+q representing all successor states of Sg,h with g-value g + c and h-value330

h+q. This is a very efficient way of evaluating the heuristics within symbolic search. However, up to now, all
heuristics known to be suitable for this representation were either non-informative, inadmissible, or domain
dependent. We show, in the next two sections, that potential heuristics can be adapted to this schema to
smoothly integrate them into the GHSETA∗ algorithm.

Algorithm 1 shows the pseudo-code of the GHSETA∗ algorithm in the forward direction. It takes a335

planning task, a heuristic estimate hI for the initial state, and a function δh inducing, together with hI , a
consistent admissible forward heuristic, i.e., we assume that for every sequence of operators π = ⟨o1, . . . , on⟩
applicable in I it holds that hI +

∑
i∈[n] δh(oi) is a forward consistent and forward admissible heuristic

estimate for the state πJIK.
Lines 1 and 2 describe the partitioning of operators into TRs based on their cost and the change of340

heuristic value they induce via the function δh. The rest is a standard A∗ algorithm without re-opening
states (because we assume a consistent heuristic) adapted for searching over sets of states and computing
heuristic values by summing over sequences of operators rather than calling a heuristic function for every
expanded state. The main distinctions to the state-space A∗ are the following:

(a) As in the standard A∗, we maintain the set of closed states (lines 5 and 11). However, since we operate345

on sets of states instead of individual states, we represent the set of closed states as a BDD (possibly
with disjunctive partitioning), and we skip closed states stored in the set closed by removing closed

from all expanded and generated sets of states (lines 8 and 13).

(b) GHSETA∗ also maintains an open list as a priority queue ordering states by the increasing f -values,
but all states with the same g and h-values are merged into one BDD (line 16 and the function350

InsertOrUpdate). So, in each cycle, a set of states with the lowest f -value are processed at once using
the BDD Sg,h with minimal g-value among those with minimal f = g +max(h, 0) value.

(c) Given a set of states Sg,h (with the g-value g and h-value h) and a TR Tc,q (with the cost c and
inducing the change of h-value by q), we can easily compute the g and h-value of the successor states
image(Sg,h, Tc,q) as g + c and h+ q, respectively (line 13).355
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Algorithm 1: GHSETA∗ in the forward direction with a consistent heuristic.

Input: A planning task Π, a heuristic estimate hI ≥ 0 for the initial state, and a function δh : O 7→ R so
that hI and δh induce a consistent and admissible heuristic.

Output: An optimal plan or “unsolvable”.
1 for each ⟨c, q⟩ ∈ {⟨cost(o), δh(o)⟩ | o ∈ O} do
2 Construct Tc,q from {o ∈ O | cost(o) = c, δh(o) = q} ;
3 S0,hI ← BDD representing the set {I} ;
4 open← {⟨hI , S0,hI ⟩};
5 closed← ∅ ;
6 while open ̸= ∅ do
7 ⟨f, Sg,h⟩ ← PopMin(open);
8 Sg,h ← Sg,h ∧ ¬closed ;
9 if Sg,h contains a goal state then

10 return ExtractPlan(Sg,h) ;
11 closed← closed ∨ Sg,h ;
12 for each Tc,q do
13 Sg+c,h+q ← image(Sg,h, Tc,q) ∧ ¬closed ;
14 if Sg+c,h+q ̸= ∅ then
15 f ← g + c+max(0, h+ q) ;
16 open← InsertOrUpdate(open, f , Sg+c,h+q) ;

17 return “unsolvable”;

18 function InsertOrUpdate(O, f , Sg,h)

19 if there exists ⟨f, S′
g,h⟩ ∈ O then

20 return (O \ ⟨f, S′
g,h⟩) ∪ {⟨f, S′

g,h ∨ Sg,h⟩};
21 else
22 return O ∪ {⟨f, Sg,h⟩};

(d) Instead of terminating when a goal state is removed from the queue, we terminate when we remove a
set of states containing a goal state. The plan extraction in GHSETA∗ (line 10) is a little bit more
complicated than in state-space A∗, because a simple backchaining from a goal state is not possible
here. Nevertheless, it is still polynomial in the length of the plan—a detailed description is provided
by Torralba et al. (2017).360

Finally, we adapt the GHSETA∗ algorithm to support negative h-values. Instead of considering the f -
value of a state to be g+h, we use instead f = g+max(h, 0). Therefore, the f -value of the successor states is
g+ c+max(0, h+ q) (in line 15). This is not only an optimization (i.e., avoiding the expansion of any bucket
where g > h⋆

fw(I) even if g+h < h⋆
fw(I)). In fact, this is also needed for correctness of the stopping condition,

as otherwise goal states with negative heuristic value could be expanded even if they do not correspond to365

an optimal plan. The common solution of simply changing the heuristic function to max(h, 0) is not possible
as that cannot always be expressed as a δh function. However, by keeping the original (negative) h value for
the BDD representation, and making the heuristic non-negative only when computing the f -value, we get
the best of both worlds: an efficient BDD representation without unnecessarily expanding any set of states
with negative heuristic value.370

Note that Jensen et al. (2008) also introduce the FSETA∗ algorithm where the change of heuristic values
is compiled directly into operators’ costs. This is similar to encoding the heuristic as a task transformation,
i.e., by changing the cost of each operator to be cost(o) + δh(o). It is well-known that running Dijkstra on
the reformulated task is equivalent to running A∗ on the original task (Martelli, 1977). However, it is not
entirely clear how to apply these approaches in the presence of heuristics that can take negative heuristic375

values. We leave this question to future research.
If no heuristic is used (i.e., h = 0 for all states), performing backward search is straightforward. One can

simply run Algorithm 1, starting with the BDD representing the set of all goal states instead of the initial
state (line 3). Then, at each step, it uses the pre-image operation instead of image (line 13), and it terminates
when a BDD containing the initial state is removed from the priority queue (line 9). In Sections 3 and 4, we380

explain how to extend this for performing backward search with any (backward) consistent and admissible
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heuristic.
The bi-directional search combines the forward and backward search by keeping separate open and closed

lists for each direction and then alternating between the forward and backward steps. In each iteration of
the algorithm, it is decided whether to expand a set of states from the forward or the backward open list. A385

common criteria is to select the search direction whose next step is estimated to be easiest (e.g., by selecting
the set of states whose BDD representation is smallest). In our implementation, we use the criteria used by
Torralba et al. (2017), which besides the BDD size, also considers the time spent in previous iterations to
estimate which direction will take less time in completing the next step.

The bi-directional search stops when both directions meet and we are able to prove that the plan combined390

from both directions is an optimal plan. That is, instead of checking whether the current set of states selected
for expansion contains a goal state (line 9), we check whether the intersection with the closed list from the
opposite direction is non-empty. If the intersection is not empty, then any state in such intersection is
part of a plan. The algorithm keeps track of the the best plan π found so far, and terminates as soon
as no better plan can be found, i.e., whenever cost(π) ≤ mins∈openf f(s) or cost(π) ≤ mins∈openb f(s) or395

cost(π) ≤ mins∈openf g(s) + mins∈openb g(s), where openf and openb are the open lists of the forward and

backward search, respectively, and f(s) and g(s) denote f and g-values of a state s, respectively.2 This
guarantees that the bi-directional search terminates with an optimal plan, as long as an admissible heuristic
is used in both directions, even when different heuristics are used in each direction. Note also that each
direction can use a different partitioning of operators into TRs.400

3. Operator-Potential Heuristics

Potential heuristics map facts to numerical values. Here, we show that instead of mapping facts to
numerical values, we can map each operator o to a numerical value, called operator-potential, corresponding
to the change of the heuristic value over a transition induced by o. More precisely, we show how to transform
a potential function P : F 7→ R to an operator-potential function Q : O 7→ R so that for every state s and405

each operator o applicable in s it holds that hP(oJsK) = hP(s) + Q(o). In other words, we define Q in such a
way that Q(o) is exactly equal to the change of heuristic value of the corresponding potential heuristic over
a transition between states induced by the operator o.

Recall that we assume vars(pre(o)) = vars(eff(o)) for every operator o ∈ O (the general case is discussed
in Appendix A). As pointed out by Seipp et al. (2016) in the context of proving the limitations of one-410

dimensional potential heuristics, this means that we know exactly how each operator o changes the state
s on which it is applied, i.e., for every fact ⟨V, v⟩ ∈ eff(o) we know exactly what is the value s[V ] because
⟨V, s[V ]⟩ ∈ pre(o). (Note that the same is not true for higher-dimensional potential heuristics, so operator-
potential functions are defined for potential heuristics of dimension one only.)

Definition 3. Given a potential function P, a function Q : O 7→ R is called an operator-potential function415

for P if

Q(o) =
∑

f∈eff(o)

P(f)−
∑

f∈pre(o)

P(f) (4)

for every operator o ∈ O.

In the following proposition, we show that Q(o) is exactly equal to the change of the heuristic value of
the potential heuristic from a state to state. Note that Proposition 4 holds for any state s, in particular, for
every forward reachable as well as every backward reachable state.420

Proposition 4. Let s ∈ S denote a state, and let o ∈ O denote an operator applicable in s. Then
∑

f∈s P(f)+
Q(o) =

∑
f∈oJsK P(f).

2Recent work on bi-directional explicit-state heuristic search (Holte et al., 2017; Shaham et al., 2019; Shperberg et al., 2020;
Alcázar et al., 2020; Alcázar, 2021) has derived stronger bounds when consistent heuristics are used. Transferring those to
symbolic search is a promising avenue for future research.
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Proof. Let t = s \ pre(o). Since we assume vars(pre(o)) = vars(eff(o)), it follows that t = oJsK \ eff(o).
Therefore, we have that∑

f∈s

P(f) + Q(o) =
∑
f∈t

P(f) +
∑

f∈pre(o)

P(f) + Q(o)

=
∑
f∈t

P(f) +
∑

f∈pre(o)

P(f) +
∑

f∈eff(o)

P(f)−
∑

f∈pre(o)

P(f)

=
∑
f∈t

P(f) +
∑

f∈eff(o)

P(f) =
∑

f∈oJsK

P(f).

425

Next, we show that the property from Proposition 4 extends over sequences of operators. That is, for any
two states s, s′ ∈ S and any sequence of operators π = ⟨o1, . . . , on⟩ leading from s to s′ (i.e., π is applicable in s
and πJsK = s′) it holds that the sum over operator potentials of operators from the sequence π,

∑
i∈[n] Q(oi), is

exactly equal to the change of heuristic value of the potential heuristic from s to s′, i.e., hP(s)+
∑

i∈[n] Q(oi) =

hP(s′). Note that this property holds for any sequence of operators π between states s and s′. In other words,430

for a fixed pair of states s, s′ ∈ S and any two sequences of operators π = ⟨o1, . . . , on⟩ and π′ = ⟨q1, . . . , qm⟩
both leading from s to s′, it holds that hP(s) +

∑
i∈[n] Q(oi) = hP(s) +

∑
i∈[m] Q(qi) = hP(s′). Therefore for

any such π and π′ the sums over operator potentials are exactly the same, i.e.,
∑

i∈[n] Q(oi) =
∑

i∈[m] Q(qi).
Therefore, summing operator potentials over sequences of operators preserves state-dependency as long as
the planning task is normalized. We will use this property later when we define state-dependent operator-435

potential heuristics in forward and backward direction.

Proposition 5. Let s ∈ S denote a state, and let π = ⟨o1, . . . , on⟩ denote a sequence of operators applicable
in s. Then

∑
f∈s P(f) +

∑
i∈[n] Q(oi) =

∑
f∈πJsK P(f).

Proof. (By induction) The claim clearly holds for the empty sequence π. Now, assume the claim holds for
some sequence of operators π′ = ⟨o1, . . . , ok−1⟩ such that π′ is applicable in s and k ≤ n, and we prove that440

it also holds for the sequence of operators π′′ = ⟨o1, . . . , ok−1, ok⟩. Let sk−1 = π′JsK and sk = π′′JsK.
From Proposition 4 we have that

∑
f∈sk−1

P(f)+Q(ok) =
∑

f∈sk P(f) because ok is applicable in sk−1 and

okJsk−1K = sk, and from the assumption we have that
∑

f∈sk−1
P(f) =

∑
f∈s P(f)+

∑
i∈[k−1] Q(oi), therefore

it follows that∑
f∈sk

P(f) =
∑

f∈sk−1

P(f) + Q(ok) =
∑
f∈s

P(f) +
∑

i∈[k−1]

Q(oi) + Q(ok) =
∑
f∈s

P(f) +
∑
i∈[k]

Q(oi),

which concludes the proof.445

Now that we have shown how to define operator-potential functions and we proved their fundamental
properties in relation to the corresponding potential heuristics, we move to the introduction of a new family
of operator-potential heuristics in forward and backward direction. In Section 3.1, we show how to construct
operator-potential forward heuristics that are goal-aware, forward consistent and thus also forward admissible.
In Section 3.2, we focus on operator-potential backward heuristics. We show that the same approach used for450

the operator-potential forward heuristics can be used also in the backward direction. Although it leads to
backward admissible estimates, it can also result in path-dependent heuristics. So, we show how to remedy
this issue and obtain operator-potential backward heuristics that are state-dependent, init-aware, backward
consistent, and backward admissible.

3.1. Forward Direction455

Under the assumption that vars(pre(o)) = vars(eff(o)) for every operator and with Proposition 5 in place,
the construction of a forward consistent operator-potential heuristic hQfw is straightforward. Given a potential
function P and its corresponding operator-potential function Q, we start by setting the heuristic value for
the initial state hQfw(I) to hPfw(I) =

∑
f∈I P(f), and then it follows from Proposition 5 that adding a sum

of operator-potentials over any sequence of operators π = ⟨o1, . . . , on⟩ applicable in the initial state results460

in the heuristic value hPfw(πJIK), i.e., such construction exactly preserves heuristic values of the potential
heuristic hPfw along with its properties such as consistency, goal-awareness, and admissibility.
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I

s1

s2

s3

G

o1 o2

o3 o4

o5

o ∈ O cost(o) Q(o)

o1 0 1
o2 0 0
o3 0 0.9
o4 0 0.1
o5 1 −1

Figure 1: A simple example showing path-dependency of an operator-potential heuristic after rounding operator potentials
down to the nearest integers. Let I and G denote the initial and goal state, respectively, let cost(oi) = 0 for all i ∈ [4], and
cost(o5) = 1, and let Q(o1) = 1, Q(o2) = 0, Q(o3) = 0.9, Q(o4) = 0.1, and Q(o5) = −1, and let hQfw(I) = 0.

Definition 6. Let Q denote an operator-potential function for P. An operator-potential forward heuris-
tic hQfw : Sfw 7→ R ∪ {∞} for Q is defined as

hQfw(s) =
∑
f∈I

P(f) +
∑
i∈[n]

Q(oi) (5)

for every sequence of operators π = ⟨o1, . . . , on⟩ such that πJIK = s.465

Now we need to show that hQfw is well-defined, i.e., Equation (5), indeed, expresses a function mapping
forward-reachable states to numbers. In other words, we need to show that hQfw(s) is the same for every
sequence of operators π leading from the initial state to s. This follows directly from Proposition 5 as it also
shows that hQfw is exactly equal to hPfw and therefore hQfw has exactly the same properties as hPfw.

Theorem 7. hQfw is well-defined, and hQfw(s) = hPfw(s) for every forward-reachable state s ∈ Sfw, and hQfw is470

forward admissible (goal-aware, forward consistent) if hPfw is forward admissible (goal-aware, forward consis-
tent).

Proof. Let s ∈ Sfw denote a forward reachable state, and let π = ⟨o1, . . . , on⟩ denote a sequence of operators
such that π is applicable in I and πJIK = s. From Proposition 5 it follows that

∑
f∈I P(f) +

∑
i∈[n] Q(oi) =∑

f∈s P(f), and from definitions of hQfw and hPfw it further follows that475

hQfw(s) =
∑
f∈I

P(f) +
∑
i∈[n]

Q(oi) =
∑
f∈s

P(f) = hPfw(s).

Therefore hQfw is well-defined, hQfw(s) = hPfw(s) for every s ∈ Sfw, and therefore if hPfw is forward admissible
(goal aware, forward consistent), then so is hQfw.

Note that hQfw is a state-dependent heuristic even though it is computed from I-s-paths. This is because
every I-s-path results in exactly the same value of hQfw(s). Moreover, note that hQfw can be used in an
incremental way: For every forward reachable state s ∈ Sfw and an operator o ∈ O applicable in s, we have480

that hQfw(oJsK) = hQfw(s) + Q(o). In other words, hQfw can be used in search so that we assign the heuristic
value hQfw(I) =

∑
f∈I P(f) to the initial state and then whenever we expand a state s with an operator o,

we compute the heuristic value for the resulting state simply by adding Q(o) to the heuristic value we have
previously stored for s, i.e., hQfw(oJsK) = hQfw(s) + Q(o). This property of hQfw will be particularly useful in the
context of symbolic search.485

As we show later, a frictionless application of operator-potentials in symbolic search requires partitioning
of operators using Q(o) values, i.e., we need to group together operators that induce the same change of
operator-potential heuristic values. Therefore, we need to compare Q(o) values on equality. However, P is
typically inferred using a linear program which results in Q(o) values represented as floating-point numbers.
This could significantly reduce efficiency of the partitioning as each partition can consist of a single operator490

even when Q(o) values differ only slightly. Moreover, the strength of symbolic search lies in its ability to
aggregate states with the same heuristic and g-values into a BDD. Therefore, having floating-point heuristic
values is an even larger problem.

Assuming operator costs are integers, both issues can be resolved if all Q(o) values and hPfw(I) are integers.
It is easy to see that hPfw(I) can be safely rounded up to the nearest integer, because if costs of operators are495

12



integers, then also costs of plans must be integer-valued. It may also seem that rounding operator potentials
down to the nearest integer may resolve this issue as the sums over the rounded operator potentials would
result in admissible estimates. However, rounding Q(o) values down may result in path-dependent estimates.

Consider the planning task depicted in Figure 1. The operator-potential heuristic hQfw is clearly forward
consistent, goal-aware, and forward admissible. Let Q̂ denote a function mapping each operator oi to Q(oi)500

rounded down to the nearest integer, i.e., Q̂(o1) = 1, Q̂(o2) = Q̂(o3) = Q̂(o4) = 0, and Q̂(o5) = −1. Now,
consider the state s2. If we use Q̂ instead of Q to compute heuristic values using Equation (5), then taking the
path ⟨o1, o2⟩ results in hQfw(I) + Q̂(o1) + Q̂(o2) = 1, and the path ⟨o3, o4⟩ results in hQfw(I) + Q̂(o3) + Q̂(o4) = 0,
i.e., we get two different values depending on the path used to reach s2. Moreover, note that path-dependency
may also result in inconsistency: Consider the states s1 and s2, and operator sequence ⟨o1⟩ used to reach s1505

and ⟨o3, o4⟩ used to reach s2. In this case, the estimate with Q̂ for s1 would be 1, but the estimate for s2
would be 0 as well as the cost of o2.

We resolve this issue by restricting the potential functions to always result in integer-valued operator-
potentials. Note that this approach still allows to round hPfw(I) up to the nearest integer as it clearly preserves
forward consistency, goal-awareness, and forward admissibility of the resulting heuristics.510

To obtain integer operator-potentials, we propose to use the following mixed-integer linear program (MIP):

1. For every fact f ∈ F , we create the real-valued variable P(f).

2. For every operator o ∈ O, we create the integer-valued variable Q(o).

3. To ensure goal-awareness and forward consistency of the resulting potential function P, we add the
constraint Equation (2), and, for every o ∈ O, we add the constraint Equation (3).515

4. For every operator o ∈ O, we add the constraint Equation (4). This ensures that Q(o) will be, indeed,
an operator-potential as per Definition 3, and since Q(o) is an integer-valued variable, the resulting
operator-potential will be also integer.

Clearly, any solution to such MIP results in an operator-potential function according to Equation (4)
with integer Q(o) values and the corresponding hQfw will be forward consistent, goal-aware, and forward520

admissible. So, we can use any optimization criteria that was previously proposed for the potential heuristics
(Pommerening et al., 2015; Seipp et al., 2015; Fǐser et al., 2020).

The disadvantage of using MIP is that it is harder to solve than LP because MIP is NP-hard in general
whereas LP can be solved by a polynomial algorithm. However, this seems to be rarely a bottleneck in
practice as we show in the experimental evaluation in Section 5.1.525

3.2. Backward Direction

Interestingly, under certain conditions, the very same operator-potential function and Equation (5) can
be used to obtain backward admissible estimates also in the backward direction. To be more precise, given
a potential function P such that the conditions from Theorem 2 hold and the operator-potential function Q

for P, for every s-plan π = ⟨o1, . . . , on⟩, the estimate530 ∑
f∈I

P(f) +
∑
i∈[n]

Q(oi) (6)

is a lower bound on the cost of every I-s-path. That is, Equation (6) is a backward admissible heuristic
estimate for the backward search even when P and Q are computed in the same way as for the forward
direction which we prove in the following Proposition 8.

Proposition 8. Let P denote a potential function such that Equation (2) and Equation (3) hold, let Q

denote an operator-potential function for P, let s ∈ Sfw ∩ Sbw denote a state that is both forward and back-535

ward reachable, let π = ⟨o1, . . . , on⟩ denote an s-plan, and let π′ = ⟨o′1, . . . , o′m⟩ denote an I-s-path. Then∑
f∈I P(f) +

∑
i∈[n] Q(oi) ≤

∑
i∈[m] cost(o

′
i).

Proof. Note that hQfw(I) =
∑

f∈I P(f) and that ⟨o′1, . . . , o′m, o1, . . . , on⟩ is a plan. Let g = πJsK. From Equa-

tion (2) it follows that hPfw(g) ≤ 0, and from Theorem 7 it follows that hQfw(I)+
∑

i∈[n] Q(oi)+
∑

i∈[m] Q(o
′
i) =
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V = {v1, v2}, dom(v1) = {x, y}, dom(v2) = {A,B,C}

I = {⟨v1, x⟩, ⟨v2, A⟩}, G = {⟨v2, C⟩}

o ∈ O prv(o) pre(o) eff(o) cost(o) Q(o)

o1 ∅ ⟨v1, x⟩, ⟨v2, A⟩ ⟨v1, y⟩, ⟨v2, B⟩ 1 -1
o2 ∅ ⟨v2, B⟩ ⟨v2, C⟩ 1 -1
o3 ∅ ⟨v1, y⟩ ⟨v1, x⟩ 1 -1

f P(f)

⟨v1, x⟩ 0
⟨v1, y⟩ 1
⟨v2, A⟩ 2
⟨v2, B⟩ 0
⟨v2, C⟩ -1

hP
fw(I) = hQ

fw(I) = 2

xA yB

yC

xB xC

o1
o2

o3
o2

Figure 2: Example planning task Π = ⟨V,O, I, G⟩ illustrating operator-potential backward heuristic.

hPfw(g) ≤ 0. Therefore we have that hQfw(I) +
∑

i∈[n] Q(oi) ≤ −
∑

i∈[m] Q(o
′
i). Finally, From Definition 3 and540

Equation (3) it follows that −Q(o′i) ≤ cost(o′i) for every i ∈ [m] and therefore −
∑

i∈[m] Q(o
′
i) ≤

∑
i∈[m] cost(o

′
i)

which concludes the proof.

Now, it may seem that we are ready to formulate the backward variant of operator-potential heuristics.
Unfortunately, the aforementioned Equation (6) can result in different values depending on the given s-plan
π, i.e., such heuristic estimates are path-dependent. Consider the planning task depicted in Figure 2, and545

the state “yB” backward-reachable from both goal states “xC” and “yC”. For “yC” and ⟨o2⟩, Equation (6)
evaluates to hQfw(I) + Q(o2) = 2− 1 = 1. And for “xC” and ⟨o3, o2⟩, it evaluates to hQfw(I) + Q(o3) + Q(o2) =
2 − 2 = 0. Both are backward admissible estimates for the backward search as the cost of the remaining
operator o1 is 1, but the estimates are path-dependent. This behavior is caused by the fact that we allow
negative heuristic estimates possibly resulting in different heuristic values of different goal states. For example,550

hQfw-value for “xC” is −1 whereas hQfw-value for “yC” is zero.
This observation suggests that we can fix this issue by incorporating heuristic values of goal states in

the computation. And indeed, it turns out that if Equation (3) holds for the potential function P, then
subtracting the sum of potentials over goal state facts from Equation (6) resolves the issue. So, we define
goal-corrected operator-potential backward heuristic accordingly and then we prove that it is well-defined (i.e.,555

state-dependent), init-aware, backward consistent, and therefore also backward admissible.

Definition 9. Let Q denote an operator-potential function for P such that Equation (3) holds for P. A
goal-corrected operator-potential backward heuristic hQbw : Sbw 7→ R ∪ {∞} for Q is defined as

hQbw(s) =
∑
f∈I

P(f) +
∑
i∈[n]

Q(oi)−
∑

f∈πJsK

P(f) (7)

for every backward reachable state s ∈ Sbw and every s-plan π = ⟨o1, . . . , on⟩ ∈ Ebw.

We start by showing in the following Lemma 10 that hQbw from Definition 9 is state-dependent, i.e.,560

for every backward reachable state s ∈ Sbw, hQbw(s) evaluates to the same value for all s-plans. This is a
consequence of Proposition 5 because it shows that for a given (backward reachable) state s ∈ Sbw the sum∑

f∈I P(f) +
∑

i∈[n] Q(oi)−
∑

f∈πJsK P(f) evaluates to exactly the same value for all s-plans π = ⟨o1, . . . , on⟩.

Lemma 10. Let Q denote an operator-potential function for P, let s ∈ Sbw denote a backward reachable state,
let sg ⊇ G and s′g ⊇ G denote two goal states, and let π = ⟨o1, . . . , on⟩ ∈ Ebw and π′ = ⟨o′1, . . . , o′m⟩ ∈ Ebw565

denote two s-plans such that πJsK = sg and π′JsK = s′g. Then∑
f∈I

P(f) +
∑
i∈[n]

Q(oi)−
∑
f∈sg

P(f) =
∑
f∈I

P(f) +
∑
i∈[m]

Q(o′i)−
∑
f∈s′g

P(f).
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s s′

sg s′g

o

π π′

Figure 3: Illustration for Lemma 12.

Proof. Since
∑

f∈I P(f) appears on both sides of the equation, we need to prove that∑
i∈[n]

Q(oi)−
∑
f∈sg

P(f) =
∑
i∈[m]

Q(o′i)−
∑
f∈s′g

P(f).

Since πJsK = sg, it follows from Proposition 5 that
∑

f∈s P(f) +
∑

i∈[n] Q(oi) =
∑

f∈sg P(f), and similarly for

π′ and s′g we have that
∑

f∈s P(f) +
∑

i∈[m] Q(o
′
i) =

∑
f∈s′g

P(f). Therefore, it follows that∑
i∈[n]

Q(oi)−
∑
f∈sg

P(f) = −
∑
f∈s

P(f) =
∑
i∈[m]

Q(o′i)−
∑
f∈s′g

P(f),

which concludes the proof.570

Next, we show that hQbw is init-aware.

Lemma 11. Let Q denote an operator-potential function for P, let π = ⟨o1, . . . , on⟩ denote a plan, and let
sg = πJIK. Then

∑
f∈I P(f) +

∑
i∈[n] Q(oi)−

∑
f∈sg P(f) = 0.

Proof. It follows directly from Proposition 5, because sg = πJIK and therefore
∑

f∈I P(f) +
∑

i∈[n] Q(oi) =∑
f∈sg P(f).575

In the following Lemma 12 we show that hQbw is backward consistent under the assumption that Equa-
tion (3) holds for P. It follows from the state-dependency of hQbw and the fact that if Equation (3) holds, then
−Q(o) ≤ cost(o) holds, i.e., transitioning over an operator o cannot decrease the heuristic estimate by more
than cost(o).

Lemma 12. Let Q denote an operator-potential function for P, let s, s′ ∈ Sbw and o ∈ O denote two580

backward reachable states and an operator such that oJsK = s′, let π = ⟨q1, . . . , qn⟩ ∈ Ebw denote an s-plan,
let π′ = ⟨q′1, . . . , q′m⟩ ∈ Ebw denote an s′-plan, and let sg = πJsK and s′g = π′Js′K. If Equation (3) holds for P,
then ∑

f∈I

P(f) +
∑
i∈[m]

Q(q′i)−
∑
f∈s′g

P(f) ≤
∑
f∈I

P(f) +
∑
i∈[n]

Q(qi)−
∑
f∈sg

P(f) + cost(o).

Proof. Let ρ = ⟨o, q′1, . . . , q′n⟩ (see illustration in Figure 3). From Lemma 10 and the fact that ρ ∈ Ebw and
it is applicable in s and ρJsK = s′g, it follows that585 ∑

f∈I

P(f) +
∑
i∈[n]

Q(qi)−
∑
f∈sg

P(f) =
∑
f∈I

P(f) + Q(o) +
∑
i∈[m]

Q(q′i)−
∑
f∈s′g

P(f),

therefore ∑
f∈I

P(f) +
∑
i∈[m]

Q(q′i)−
∑
f∈s′g

P(f) =
∑
f∈I

P(f) +
∑
i∈[n]

Q(qi)−
∑
f∈sg

P(f)− Q(o).

Therefore it is enough to prove that −Q(o) ≤ cost(o) which follows directly from Definition 3 and Equation (3).

Now we are ready to prove that goal-corrected operator-potential backward heuristics are well-defined
(i.e., state-dependent), init-aware, backward consistent, and therefore also backward admissible.590
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Algorithm 2: Partitioning of the goal states such that all states within each partition have the same hP-
value.

Input: A set of variables V = {V1, . . . , Vn}, a disambiguation map DG for goal G, a potential function P.
Output: Partitioning PG of the goal states by their hP-values.

1 PG ← {⟨0,S⟩} where S is a set of all states;
2 for i = 1, . . . , n do
3 M ← ∅;
4 for each f ∈ DG(Vi) do
5 B ← {s ∈ S | f ∈ s};
6 InsertOrUpdate(M , P(f), B) ;

7 PG ← Merge(PG, M) ;

8 return PG;

9 function InsertOrUpdate(M , h, B)

10 if there exists ⟨h,B′⟩ ∈M then
11 M ← (M \ {⟨h,B′⟩}) ∪ {⟨h,B′ ∪B⟩};
12 else
13 M ←M ∪ {⟨h,B⟩};

14 function Merge(M , M ′)

15 X ← ∅;
16 for each ⟨h,B⟩ ∈M do
17 for each ⟨h′, B′⟩ ∈M ′ do
18 InsertOrUpdate(X, h+ h′, B ∩B′);

19 return X;

Theorem 13. hQbw is well-defined, init-aware, backward consistent, and backward admissible.

Proof. It follows from Lemma 10 that hQbw is well-defined because given any backward reachable state s,
the value of hQbw(s) is the same for all s-plans. Init-awareness follows directly from Lemma 11, backward
consistency follows directly from Lemma 12, and backward admissibility follows from init-awareness and
backward consistency.595

3.3. Partitioning of Goal States into BDDs for Backward Search

Backward search starts in goal states and proceeds towards the initial state. So, given a state s reached
during the backward search, backward heuristics estimate the cost of the optimal I-s-path. Incorporating
heuristic values of goal states into Equation (7) allows us to define a backward heuristic that is state-
dependent, backward consistent, backward admissible, and at the same time we can associate each operator600

with the change of the heuristic value it induces. However, it also comes with a price. Goal conditions of
planning tasks are partial states, so they can define an exponential number of goal states. It may seem we
need to enumerate all (forward reachable) goal states in order to compute heuristic values for them, which
would be in general infeasible. Fortunately, in symbolic search, sets of states are represented as BDDs whose
size can be exponentially smaller than the number of states they represent. So, in order to use hQbw in the605

context of symbolic search, we do not need to enumerate all forward reachable goal states, but rather partition
those goal states into multiple BDDs so that each BDD represents all forward reachable goal states with the
same hP-value (or an overapproximation of them). Algorithm 2 encapsulates the algorithm that does exactly
that.

The main idea behind Algorithm 2 is as follows. Given a fact f , let Sf = {s ∈ S | f ∈ s} denote a set610

of all states containing f . First, it is easy to see that, given a variable V ∈ V and its value v ∈ dom(V ), for
every state s ∈ S⟨V,v⟩ it holds that s[V ] = v and therefore P(⟨V, s[V ]⟩) = P(⟨V, v⟩). So, given a set of distinct
variables V1, . . . , Vn ∈ V and their respective values v1 ∈ dom(V1), . . . , vn ∈ dom(Vn), for every state s ∈⋂

i∈[n] S⟨Vi,vi⟩ it holds that s[Vi] = vi for every i ∈ [n], and therefore
∑

i∈[n] P(⟨Vi, s[Vi]⟩) =
∑

i∈[n] P(⟨Vi, vi⟩).
In other words, starting from sets of states Sf1 , . . . ,Sfn where each fi is from a different variable Vi, we can615

construct a set of more specific states by taking the intersection between sets Sfi while keeping track of the
sum of potentials over variables Vi.
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Second, given a variable V and two values v, v′ ∈ dom(V ), for every state s ∈ S⟨V,v⟩ ∪ S⟨V,v′⟩ it holds
that s[V ] = v or s[V ] = v′. So, if P(⟨V, v⟩) = P(⟨V, v′⟩), then also P(⟨V, s[V ]⟩) = P(⟨V, v⟩) for every state
s ∈ S⟨V,v⟩ ∪ S⟨V,v′⟩. And we can generalize this idea to a set of distinct variables V1, . . . , Vn ∈ V and their620

values v1, v
′
1 ∈ dom(V1), . . . , vn, v

′
n ∈ dom(Vn): If

∑
i∈[n] P(⟨Vi, vi⟩) =

∑
i∈[n] P(⟨Vi, v

′
i⟩), then for every state

s ∈
⋂

i∈[n] S⟨Vi,vi⟩ ∪
⋂

i∈[n] S⟨Vi,v′
i⟩ it holds that s[Vi] = vi or s[Vi] = v′i for every i ∈ [n], and therefore also∑

i∈[n] P(⟨Vi, s[Vi]⟩) =
∑

i∈[n] P(⟨Vi, vi⟩).
Algorithm 2 puts these two ideas together. It iterates over all variables one by one (outer cycle on lines 2

to 7). For each variable Vi, it considers only the values of Vi that can be part of some (forward reachable) goal625

state (line 4), and partitions all states having those values by their potential values (lines 3 to 6). Finally, it
merges the partitioning over the variable Vi into the partitioning over the variables V1, . . . , Vi−1 achieved in
the previous step while keeping track of the sum of potentials over the variables V1, . . . , Vi.

Since only the facts that can be part of a goal state are considered, the resulting partitioning PG is
a partitioning of goal states only (Theorem 14(A1)). Since the disambiguation map DG overapproximates630

forward reachable states by definition, PG contains all forward reachable goal states (Theorem 14(A2)). Since
the function Merge is always called only for a partitioning M over variables V1, . . . , Vi−1 and a partitioning M ′

over the variable Vi, taking the intersections on line 18 must result in a partitioning over variables V1, . . . , Vi

eventually terminating with the partitioning over all variables (Theorem 14(A3)). And finally, since, on
line 18, h is the sum of potentials over variables V1, . . . , Vi−1, and h′ is the potential over the variable Vi, then635

h+h′ is the sum of potentials over variables V1, . . . , Vi which eventually results in the sum over all variables,
i.e., the value of the potential heuristic (Theorem 14(A4)).

Theorem 14. Let V = {V1, . . . , Vn}, DG, and P denote inputs of Algorithm 2, and let PG = {⟨h1, P
G
1 ⟩, . . . , ⟨hm, PG

m⟩}
denote the output of Algorithm 2. Then

(A1) for every s ∈
⋃

j∈[m] P
G
j it holds that G ⊆ s, i.e., PG contains only goal states and nothing else; and640

(A2) for every forward-reachable goal state sg it holds that sg ∈
⋃

j∈[m] P
G
j , i.e., PG contains all forward-

reachable goal states; and

(A3) for every j, k ∈ [m] such that j ̸= k it holds that PG
j ∩ PG

k = ∅ and hj ̸= hk, i.e., P
G is, indeed, a

partitioning; and

(A4) for every j ∈ [m] and every s ∈ PG
j it holds that hj = hP(s), i.e., Algorithm 2 partitions goal states645

based on their hP-values.

Proof. Given a set of variables X ⊆ V and a partial state s, let s|X denote a restriction of s to X, i.e.,
s|X = {⟨V, v⟩ | ⟨V, v⟩ ∈ s, V ∈ X}; and given a set of partial states S, let S|X = {s|X | s ∈ S}.

We start with four invariants that hold in every cycle i of the outer loop (lines 2-7) with respect to the
construction of the set M (constructed on lines 3-6):650

(I1) For every ⟨h,B⟩ ∈ M and every s ∈ B it holds that ⟨Vi, s[Vi]⟩ ∈ DG(Vi). This follows from the fact
that B is built from the union of sets of states {s ∈ S | f ∈ s} where f ∈ DG(Vi).

(I2) For every ⟨h,B⟩ ∈M and every s ∈ B it holds that h = P(⟨Vi, s[Vi]⟩). This holds because InsertOrUpdate
inserts a set of states B = {s ∈ S | f ∈ s} with h = P(f) only if the value h is not yet in M , and it
replaces ⟨h,B⟩ with ⟨h,B ∪B′⟩ where B′ = {s ∈ S | f ′ ∈ s} only if P(f ′) = h.655

(I3) For every ⟨h,B⟩ ∈ M it holds that B|V\{Vi} = S|V\{Vi}, i.e., B restricted to all variables excluding Vi

is a set of all syntactic partial states over V \ {Vi}. This follows from the fact that every B on line 5 is
constructed so that B|V\{Vi} = S|V\{Vi} and therefore for every union X of such sets it also holds that
X|V\{Vi} = S|V\{Vi}.

(I4) For every ⟨h,B⟩, ⟨h′, B′⟩ ∈ M such that ⟨h,B⟩ ≠ ⟨h′, B′⟩ it holds that B ∩ B′ = ∅ and h ̸= h′. Since660

InsertOrUpdate maintains the set M so that there no two elements with the same h-value, we have
that h ̸= h′. Since {s ∈ S | f ∈ s} ∩ {s ∈ S | f ′ ∈ s} = ∅ whenever f ̸= f ′, we have that B ∩B′ = ∅.
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Since PG is initialized with the set of all (syntactic) states S and, in the function Merge, the sets of
states are constructed only using intersections, it follows from (I3) that in every cycle i of the outer loop,
the function Merge is called on line 7 with the argument PG such that for every ⟨h,B⟩ ∈ PG it holds that665

B|{Vi,...,Vm} = S|{Vi,...,Vm}. Therefore, the function Merge returns PG such that for every ⟨h,B⟩ ∈ PG it
holds that B|{Vi+1,...,Vm} = S|{Vi+1,...,Vm}, and furthermore from (I1) it follows that for every s ∈ B and
every V ∈ {V1, . . . , Vi}, it holds that ⟨V, s[V ]⟩ ∈ DG(V ). Therefore, at the end of the algorithm, for every
⟨h,B⟩ ∈ PG and every s ∈ B and every V ∈ V, it holds that ⟨V, s[V ]⟩ ∈ DG(V ). Therefore, it follows from
the definition of DG that (A1) holds because DG(V ) = {⟨V, v⟩} for every ⟨V, v⟩ ∈ G, and also (A2) holds670

because we considered all possible facts that can appear in any forward reachable goal state.
From (I4) and the fact that Merge uses only intersections to construct sets of states, it follows that

PG
j ∩PG

k = ∅ for every j, k ∈ [m] s.t. j ̸= k. And since InsertOrUpdate makes sure that the output set does
not contain two elements with the same h-value, it follows that (A3) holds.

Finally, from (I2) and the fact that Merge in cycle i sums h and h′ such that h is a sum of potentials over675

variables V1, . . . , Vi−1 and h′ is the potential over variable Vi, it follows that (A4) holds.

Note that all sets of states can be represented as BDDs, and union (∪) and intersection (∩) between sets
of states can be computed as a disjunction (∨) and conjunction (∧) between BDDs.

Also note that Algorithm 2 can be easily used for generating a symbolic pattern database equivalent to
the potential heuristic. Running Algorithm 2 with empty G as the input will produce a partitioning of all680

states (i.e., all states extending ∅) by their hP-values. Such symbolic pattern database can be used directly
in the variant of BDDA∗ introduced by Kissmann & Edelkamp (2011) (discussed in Section 2.2). However,
there are two main reasons why not to use such symbolic pattern databases. First, the computation of the
partitioning can be easily infeasible in practice because there is no guarantee that the resulting BDDs will
concisely represent the underlying set of states (i.e., in the worst case the size of the BDD can be linear in the685

number of states it represents, therefore it can grow exponentially). This guarantee does not exist even for
the partitioning of goal states and we will focus on this aspect in our experimental evaluation in Section 5.4.
Second, and more importantly, symbolic pattern databases generated with Algorithm 2 cannot be more
informative than the corresponding potential heuristic which, in turn, is equivalent to the operator-potential
heuristics hQfw (and to hQbw on forward reachable states). As we discuss in the next section, hQfw and hQbw690

can be applied in the symbolic search by a straightforward integration of the underlying operator-potential
function Q into the GHSETA∗ search, which makes the computation of heuristic values using symbolic pattern
databases much more expensive than using GHSETA∗ with hQfw or hQbw instead.

4. Symbolic Search with Operator-Potential Heuristics

The integration of the operator-potential forward heuristic in the forward GHSETA∗ is straightforward.695

The operator-potential forward heuristic hQfw is defined as hQfw(s) =
∑

f∈I P(f)+
∑

i∈[n] Q(oi) (see Equation (5))

and therefore we have that hQfw(s) = hP(I) +
∑

i∈[n] Q(oi) (because hP(I) = hPfw(I) =
∑

f∈I P(f)). Moreover,

we have shown in Theorem 7 that hQfw is forward consistent and forward admissible (assuming the underlying
hPfw is forward consistent and forward admissible). Therefore, we can integrate hQfw into GHSETA∗ described
in Algorithm 1 by simply setting hI to hP(I) and using Q as the δh function. That is, we set the heuristic700

value of the initial state to hP(I), and partition operators by their costs and Q(o) values.
For the backward direction, we also use Q as the δh function, but on top of that we need to partition the set

of goal states using Algorithm 2. That is, we cannot start with the BDD representing the set of all goal states
(and initialize hI to hP(I)) because this could result in a path-dependent inconsistent heuristic. What we
need to do instead is to generate the partitioning of the (forward reachable) goal states by their hP-values and705

initialize the open list accordingly. Let PG = {PG
h1
, . . . , PG

hn
} denote all partitions returned by Algorithm 2,

where h1, . . . , hn are all distinct hP-values goal states can have, i.e., for every PG
hi
∈ PG and every state

sg ∈ PG
hi

it holds that hP(sg) = hi. Moreover, let hI
i = hP(I)−hi for every i ∈ [n]. Then we need to initialize

the open list (lines 3 and 4 in Algorithm 1) as {⟨max(0, hI
i ), S0,hI

i
⟩ | PG

hi
∈ PG, S0,hI

i
= PG

hi
}, i.e., we insert

every partition PG
hi

into the open list with the g-value set to zero, h-value set to hI
i = hP(I)−hi, and f -value710

set to max(0, hI
i ). This is all that is needed, because it ensures that any sequence of operators ⟨o1, . . . , om⟩

applied on any state from any S0,hI
i
results in the h-value hI

i +
∑

j∈[m] Q(oj) = hP(I)−hi+
∑

j∈[m] Q(oj) which
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is exactly what we need in order to obtain a goal-corrected operator-potential backward heuristic according
to Definition 9 that is backward consistent and backward admissible (Theorem 13).

The bi-directional GHSETA∗ combines the aforementioned approaches and therefore we can use different715

operator-potential heuristics in each direction or choose to use blind symbolic search in one direction and an
operator-potential heuristic in the other.

5. Experimental Evaluation

The proposed heuristics and the GHSETA∗ algorithm was implemented in C as a part of the cpddl
planning library.3 The inference of potential and operator-potential functions was implemented using CPLEX720

LP/MIP solver v22.1.0. For the manipulation of BDDs we used the CUDD library v3.0.0.
The translation from PDDL to FDR uses the inference of lifted mutex groups proposed by Fǐser (2020)

that are subsequently used for the creation of FDR variables. Operators and facts are pruned with the h2

heuristic in forward and backward direction (Alcázar & Torralba, 2015), and we used mutex pairs from the
forward h2 heuristic for disambiguation.725

Performing operations on BDDs can sometimes be very time-consuming, which significantly reduces per-
formance of the symbolic search. Therefore, we follow the approach used in previous implementations of
symbolic planners by applying various time limits on BDD operations to mitigate their negative effect when-
ever we can. We use a time limit of 30 seconds for applying mutexes on the BDDs representing goal states.
When the time limit is reached in the forward or backward GHSETA∗, the search is simply performed without730

mutexes applied on the goal BDDs. In case of bi-directional GHSETA∗, when the time limit is reached, the
search in the backward direction is disabled, because it is a strong indication that computing successor states
in the backward direction will be very slow or it will require a large amount of memory. We also applied 10
seconds time limit on merging transition relation BDDs, i.e., for each cost and operator-potential value we
try to build a single BDD representing all operators in that partition, but if we fail to do that within the time735

limit, we use the disjunctive partitioning (Jensen et al., 2008; Torralba et al., 2017). In case of bi-directional
GHSETA∗, we also turn off backward search once the step in the backward direction takes longer than three
minutes (i.e., one tenth of the overall time limit as we describe below). This helps symbolic search to proceed
without getting stuck in a fruitless attempt to compute a set of states that cannot be efficiently represented
as a BDD. We do not apply the same time limit in the forward direction, because computing successors in740

the backward direction is usually more time-consuming than in the forward direction (i.e., if it takes long in
the forward direction, it will probably take even longer in the backward direction).

The experiments were conducted on a cluster of computing nodes with Intel Xeon Scalable Gold 6146
processors. The time and memory limits were set to 30 minutes and 8 GB, respectively. We used all planning
domains from the optimal track of International Planning Competitions (IPCs) from 1998 to 2018 excluding745

the ones containing conditional effects after translation and those that could not be grounded and pruned
with h2 within the time and memory limits. We merged, for each domain, all benchmark suites across
different IPCs eliminating duplicate instances, resulting in a total of 1648 planning tasks across 48 domains.4

Potential and operator-potential functions were inferred with the following optimization criteria:

• I: maximize the heuristic value of the initial state (Pommerening et al., 2015), i.e., we set the opti-750

mization criteria of the LP/MIP to maximize
∑

f∈I P(f).

• A+I: maximize the heuristic value for the average (syntactic) state while enforcing the maximum heuris-
tic value for the initial state (Seipp et al., 2015; Fǐser et al., 2020). We first compute I to obtain the
maximal heuristic value for the initial state hI . Then we extend the LP/MIP with the additional
constraint

∑
f∈I P(f) ≥ hI , and we maximize the sum755

∑
⟨V,v⟩∈F

P(⟨V, v⟩)
|dom(V )|

.

.

3Source code is publicly available at https://gitlab.com/danfis/cpddl
4Dataset is available at https://gitlab.com/danfis/pddl-data
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• S1k+I: maximize the average heuristic value for 1 000 states sampled using random walks, while enforcing
the maximum heuristic value for the initial state (Seipp et al., 2015; Fǐser et al., 2020). We enforce
the maximum heuristic value for the initial state as in A+I. Then we sample 1 000 states S by random
walks starting from the initial state with binomially distributed length of walks centered around the760

double of the maximum h-value for the initial state. Finally, we set the optimization criteria to the
maximization of the heuristic value over states S, i.e., we maximize

1

|S|
∑
s∈S

∑
f∈s

P(f).

• M2+I: maximize the average heuristic value for all reachable states approximated with mutexes while
enforcing the maximum heuristic value for the initial state (Fǐser et al., 2020). The maximum h-value
for the initial state is enforced as in A+I and S1k+I. The optimization criteria is based on estimating,765

for each fact f ∈ F , the number of forward reachable states containing f . The details are described by
Fǐser et al. (2020, Section 5.1) as the optimization criteria optkM which we use for k = 2.

The blind symbolic search is denoted by b. The forward symbolic search is denoted by −→· , and the
backward symbolic search by ←−· : For example, the blind forward search is denoted by

−→
b , the backward

search with hQbw optimized for A+I is denoted by
←−
A+I, and the bi-directional search with hQfw optimized for770

A+I used in the forward direction, and hQbw optimized for I in the backward direction is denoted by
−→
A+I-
←−
I .

For the blind bi-directional symbolic search, we use the shorthand
←→
b .

For symbolic search with operator-potential heuristics (hQfw and hQbw), we transformed planning tasks so
that vars(pre(o)) = vars(eff(o)) for every operator o by the “multiplication” method described in Section 2
using the h2 mutexes for disambiguation. We also compare to the variant where tasks are transformed to TNF775

using the (polynomial) method proposed by Pommerening & Helmert (2015) improved with disambiguations
(Fǐser et al., 2020). We show, however, that this method is almost always detrimental to the performance.
Note that the transformed planning tasks are not only used for the computation of potential functions,
but must also be used for the symbolic search, because the inferred operator-potentials correspond to the
operators of the transformed planning task, not the original task. The time spent in the transformation of780

planning tasks is always counted as a part of the running time.
Besides our implementation of blind symbolic search, we also compare to the following planners:

• A∗ with potential heuristics using the same optimization criteria used for operator-potential heuristics
(PI, PA+I, PS1k+I, and PM2+I);

• A∗ with the LM-Cut (lmc) heuristic (Helmert & Domshlak, 2009);785

• A∗ with the merge-and-shrink (ms) heuristic with SCC-DFP merge strategy, non-greedy bisimulation
shrink strategy, and the limit of 50 000 states for the resulting abstract transition system (Helmert
et al., 2014; Sievers et al., 2016; Sievers & Helmert, 2021);

• the Complementary2 planner (comp2) from IPC 2018 (Franco et al., 2017, 2018);

• the Scorpion planner (scrp) from IPC 2018 (Seipp, 2018; Seipp & Helmert, 2018);790

• the cGamer planner from IPC 2014 (Kissmann & Edelkamp, 2011; Torralba et al., 2014b) with the
PDB heuristic (cgm), i.e., an implementation of the symbolic search with pattern databases.

We do not show a detailed comparison to the implementation of blind symbolic search competing in
IPC 2011 and 2014 (smb), because our implementation has overall better performance. The overall number

of solved tasks is 943 by
−→
b in contrast to 852 by

−−→
smb, 795 by

←−
b vs. 702 by

←−−
smb, and 1 055 by

←→
b vs. 942795

by
←→
smb. Moreover, there are only 27, 12, and 13 individual tasks solved by

−−→
smb,

←−−
smb, and

←→
smb that are not

solved by
−→
b ,
←−
b , and

←→
b , respectively.

The cgm planner is compared only on subsets of domains because of its limited support of PDDL fea-
tures like conditional effects, inequality preconditions, or quantifiers (we had to exclude domains caldera,
cavediving, GED, maintenance, movie, mprime, snake, spider, termes, and trucks).800
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Figure 4: Per-task comparison of the time in seconds needed for solving LP formulations of potential functions I, A+I, M2+I, and
S1k+I (on horizontal axis), and the corresponding MIP formulations of operator-potential functions (on vertical axis).
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(a) Cumulative number of tasks on the vertical axis over the ratio
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Figure 5: Cumulative graphs comparing solving MIP and LP variants of (operator-) potential heuristics. Only tasks where both
MIP and LP was solved within time and memory limits are considered.

5.1. Operator-Potential Functions via Mixed-Integer Linear Programs

Potential functions (for state-space search) are typically inferred using linear programs (LPs). Never-
theless, a smooth integration of operator-potential heuristics in the symbolic search requires integer-valued
operator-potentials which in turn requires solving mixed-integer linear programs (MIPs).

Although there always exists an operator-potential heuristic (e.g., assigning zero to all operators), solving805

MIP instead of LP may result in a less informative heuristic because the MIP used for operator-potentials
is more restricted than the corresponding LP for (fact) potentials. To get a sense of how much does using
integer-valued operator-potentials cost in terms of a loss of informativeness, we focus on the potential heuristic
optimized for the initial state (I) which gives us the highest possible estimate for the initial state. Comparing
how its values for initial states change if the MIP is used instead of LP shows that it actually almost never810

changes. We found that we get a smaller heuristic value in only 17 tasks from four domains (two tasks in
nomystery, three in pegsol, eight in pipesworld-notankage, and four in pipesworld-tankage), and the heuristic
values always differ only by one. So, using MIP instead of LP almost never leads to a loss of informativeness.
However, solving a MIP, which is NP-complete, is typically much more time and memory demanding than
solving a LP, which can be done in polynomial time.815

Figure 4 shows per-task comparisons of the runtime of LP and MIP solvers for different variants of
(operator-) potential heuristics. Note that I requires solving one LP (or MIP), whereas A+I, M2+I, and S1k+I

require solving two LPs (MIPs)—the first one for getting maximal heuristic value for the initial state which
is then used in the second one as an additional constraint. Although solving the MIP is indeed almost always
slower (sometimes by more than two orders of magnitude), the runtime is not a significant limiting factor820

in most tasks. This can be observed in Figure 5a depicting a cumulative number of tasks with successfully
inferred operator-potentials on y axis versus the ratio between the runtime of MIP and LP variants on x
axis, i.e., the point (x, y) corresponds to y tasks where the ratio between the runtime of MIP over LP is x or
less. For all tested optimization criteria of potential heuristics, the slowdown is well below the factor of ten
for most of the tasks, and the median slowdown is 1.4 for I, 2.6 for A+I, 2.3 for S1k+I, and 1.6 for M2+I.825

Figure 5b depicts the runtime in absolute numbers as a cumulative graph of the number of tasks over the
runtime of the MIP variant. It shows that the operator-potential function can be found within one second
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Figure 6: Per-task comparison of the number of operators before and after the transformation using poly or mult; base denotes
the number of operators in the original planning task (before the transformation).
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I
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A+I
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S1k+I

−−→
M2+I

←−
I
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A+I
←−−−
S1k+I

←−−
M2+I

−→
A+I-
←−
b
−→
A+I-
←̃−
I

poly

#domains with higher coverage than mult 0 0 0 0 1 1 2 1 0 0

#tasks solved by poly but not by mult 0 1 1 1 5 1 4 1 1 1

overall number of solved tasks 884 998 980 990 649 610 616 610 827 818

mult

#domains with higher coverage than poly 21 18 18 19 32 31 26 31 37 39

#tasks solved by mult but not by poly 108 120 121 124 174 185 158 184 337 304

overall number of solved tasks 992 1 117 1 100 1 113 818 794 770 793 1 163 1 121

Table 1: Comparison of the poly and mult methods in terms of the number of domains where one method solved more tasks
than the other, the number of tasks solved by one method but not the other, and the overall number of solved tasks.

for most tasks, and under ten seconds for almost all tasks. The runtime higher than ten seconds occurred
in only 25, 74, 127, and 130 tasks for I, A+I, S1k+I, and M2+I, respectively. In contrast to the LP variant,
MIP could not be solved within the time or memory limit in only one task from the caldera domain, four830

from pipesworld-tankage, and two from spider for I and A+I, and additionally three more tasks from airport
and four more from pipesworld-notankage for S1k+I and M2+I. Overall, using MIP instead of LP is rarely a
bottleneck, primarily because it is computed only once before the search starts.

5.2. Normalization of Planning Tasks

State-dependent and (forward and backward) consistent heuristics hQfw and hQbw require that vars(pre(o)) =835

vars(eff(o)) for every operator o ∈ O. In the set of benchmarks we use here, this is the case in 485 out of
1 648 tasks. The rest of the tasks has to be transformed to this form. As already described in Section 2, it
can be done either by the polynomial method described by Pommerening & Helmert (2015) and Fǐser et al.
(2020), denoted by poly, or by the (more brute-force) “multiplication” method (mult). The disadvantage of
the poly method is that it can introduce many zero-cost operators, and the disadvantage of the mult method840

is that it can incur in an exponential blow-up of the number of operators. Nevertheless, Figure 6 shows that
it rarely happens that the number of operators is significantly increased by mult in our dataset. In fact, only
one task (from the caldera domain) could not be transformed by mult due to the memory limit, and the
number of operators grew more than two-fold in only two domains: In maintenance, the number of operators
was between 2.3 and 2.7 times higher with mult. In agricola, the number of operators increased 7- to 16-fold.845

The runtime also does not seem to be an issue. The transformation takes more than one second in only
28 tasks for mult in contrast to 34 tasks for poly. The maximum runtime of mult is 6.7 seconds in contrast
to 9 seconds of poly, and the median of the ratio between the runtimes of mult and poly is one. Therefore,
both methods are about as fast as the other.

So, neither of the methods seem to be detrimental in terms of the size of the resulting planning task or850

the runtime overhead they incur. However, it turns out that the mult method has a much better synergy
with the symbolic search with operator-potential heuristics than poly, as can be observed in Table 1. For
example, there is only a single task from the whole dataset where using poly is beneficial over using mult

in the forward search—it is the one task from the caldera domain mentioned above, where mult could not
successfully transform the planning task within the memory limit. We think the clear superiority of mult is855

caused by the auxiliary zero-cost operators created by poly, because a single operator in the task created
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Domain Dominance Task Dominance
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I

−→ I −→ b P
I

tot

−→
A+I – 4 13 25 25 25 30 31 31 – 6 21 149 151 153 125 184 200 1 117
−−→
M2+I 1 – 11 25 25 25 30 31 31 2 – 18 151 151 155 121 180 201 1 113
−−−→
S1k+I 2 4 – 22 22 21 26 30 27 4 5 – 140 141 142 110 170 189 1 100

PA+I 9 9 12 – 3 4 19 24 16 36 42 44 – 5 14 113 169 65 1 004

PM2+I 8 9 12 0 – 3 19 24 16 33 37 40 0 – 13 108 164 61 999

PS1k+I 9 10 12 2 4 – 20 24 17 32 38 38 6 10 – 107 162 69 996
−→
I 0 0 0 14 14 14 – 21 18 0 0 2 101 101 103 – 76 134 992
−→
b 4 4 5 16 16 17 7 – 20 10 10 13 108 108 109 27 – 132 943

PI 5 6 7 0 0 3 16 19 – 22 27 28 0 1 12 81 128 – 939

Table 2: “Domain Dominance”: the row x and column y shows the number of domains where the method x solved more tasks
than the method y. “Task Dominance”: the row x and column y shows the number of tasks solved by x but not by y. “tot”:
the overall number of solved tasks (coverage). The number in the cell (x, y) is in bold if it is higher than the number in (y, x).
The most interesting numbers are highlighted with grey background: We highlight comparisons between GHSETA∗ and A∗

with the same (operator-) potential heuristics, and we highlight comparisons between the forward blind symbolic search (
−→
b )

and the forward GHSETA∗ with hQfw.

with mult may correspond to a sequence of operators in the task created with poly. Thus the change of the
heuristic value induced by such an operator is dissolved into multiple operators for poly. For these reasons,
in all of the following experiments, we consider the transformation method mult only.

5.3. Forward Search860

As we discussed in Section 5.1, operator-potential heuristics tend to retain informativeness of the corre-
sponding potential heuristics. So, the next question is whether the information provided by operator-potential
heuristics increases the efficiency of the symbolic search. Table 2 compares all variants of GHSETA∗, state-
space search A∗ with the same potential heuristics, and the blind forward and bi-directional symbolic search.
GHSETA∗ variants are clearly superior to their A∗ counterparts in overall numbers—be it the overall num-865

ber of solved tasks, number of domains in which GHSETA∗ dominates A∗, or the number of tasks solved
by GHSETA∗ but not A∗. However, we can still observe some complementarity between the methods (in
particular, for the potentials optimized for the initial state (I)).

The more detailed per-domain comparison in Table 3 indicates that A∗ with a potential heuristic solves
more tasks than GHSETA∗ with the corresponding operator-potential heuristic mostly in domains where

−→
b870

performs worse than A∗ with potential heuristics. Nevertheless, GHSETA∗ performs at least as good as (and
usually better than) the corresponding A∗ with potential heuristics in an overwhelming majority of domains.

The comparison to
−→
b in Table 2 shows that enhancing symbolic search with operator-potential heuristics

greatly increases the overall number of solved tasks, and it is rarely detrimental. Table 3 shows a great synergy
between the methods across the whole benchmark set. This suggests that the partitioning of operators by875

their operator-potentials induces a compact representation of sets of states using BDDs which can also be
observed in Figure 7.

Figure 7a shows that the size of BDDs measured as the number of nodes of the BDDs consistently decreases
when the operator-potential heuristic is used, and this, as expected, leads to a speedup per expanded BDD
(Figure 7b) as most operations on BDDs are polynomial in the number of BDD nodes. Figure 7c shows880

that the number of expanded BDDs (sets of states) increases, which, again, is expected, because the sets
of states during the search are partitioned not only by g-values but also h-values. Nevertheless, the overall
search effort is reduced, which can be observed in Figure 7d comparing the number of BDD nodes from all
expanded BDDs, and in Figure 7e showing the overall runtime in seconds. As the plots show, the number
of total BDD nodes across all BDDs involved in the search is rarely significantly increased when using885

operator-potential heuristics. This shows that operator-potential heuristics can overcome the limitations of
other “more informed” heuristics that do not induce a good BDD representation of sets of states during the
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domain
−→
I

−→
A+I

−−−→
S1k+I

−−→
M2+I PI PA+I PS1k+I PM2+I

−→
b

←→
b

agricola (20) + 13 ⊕ 20 ⊕ 20 ⊕ 20 3 3 3 3 20 20
airport (30) # 27 # 27 # 27 # 27 30 30 30 30 26 27
barman (34) + 11 + 16 + 16 + 16 11 11 11 11 18 18
blocks (35) ⊕ 23 ⊕ 31 ⊕ 30 ⊕ 31 21 28 28 28 21 33
caldera (20) 17 17 17 17 12 12 12 12 17 17
childsnack (20) ⊕ 4 ⊕ 5 ⊕ 5 ⊕ 5 0 0 0 0 4 4
data-network (20) + 9 ⊕ 13 + 9 ⊕ 13 9 9 9 9 11 13
depot (22) 6 ⊕ 11 # 10 ⊕ 11 9 11 11 11 7 8
driverlog (20) ⊕ 13 ⊕ 14 ⊕ 13 ⊕ 14 13 13 13 13 11 14
elevators (50) ⊕ 35 ⊕ 35 ⊕ 35 ⊕ 35 31 31 31 31 35 43
floortile (40) ⊕ 17 ⊕ 17 ⊕ 17 ⊕ 17 16 16 16 16 17 34
freecell (80) # 42 # 69 # 68 # 67 65 72 72 69 20 25
ged (20) ⊕ 15 ⊕ 15 # 15 ⊕ 15 15 15 19 15 15 20
gripper (20) ⊕ 20 ⊕ 20 ⊕ 20 ⊕ 20 8 8 8 8 20 20
hiking (20) + 14 + 14 + 15 + 14 13 14 14 14 16 18
logistics (61) ⊕ 27 ⊕ 28 ⊕ 28 ⊕ 28 13 24 24 24 21 25
mprime (35) ⊕ 28 ⊕ 30 ⊕ 29 ⊕ 30 24 24 24 24 27 27
mystery (19) # 15 ⊕ 19 ⊕ 19 ⊕ 19 16 18 18 18 15 15
nomystery (20) ⊕ 14 ⊕ 18 ⊕ 17 ⊕ 18 10 14 14 14 11 18
openstacks (100) ⊕ 88 ⊕ 91 ⊕ 91 ⊕ 91 57 57 57 57 87 87
parcprinter (50) # 44 # 48 ⊕ 45 # 48 48 48 45 48 41 39
parking (40) # 0 # 13 # 13 # 13 11 16 16 16 0 5
pathways (30) ⊕ 5 ⊕ 5 ⊕ 5 ⊕ 5 4 4 4 4 5 5
pegsol (50) ⊕ 48 ⊕ 48 ⊕ 48 ⊕ 48 48 48 48 48 46 48
petri-net-alignment (20) 9 11 10 10 13 13 11 13 12 19
pipesworld-notankage (50) # 22 # 25 # 25 # 23 25 30 29 29 17 17
pipesworld-tankage (50) ⊕ 18 ⊕ 20 # 20 ⊕ 20 16 19 20 19 17 17
rovers (40) ⊕ 13 ⊕ 14 ⊕ 14 ⊕ 14 6 8 8 8 13 14
satellite (27) ⊕ 7 ⊕ 11 ⊕ 10 ⊕ 11 6 6 6 6 7 11
scanalyzer (50) ⊕ 23 ⊕ 23 ⊕ 23 ⊕ 23 23 23 23 23 21 21
snake (20) # 10 # 11 # 11 # 11 15 15 15 15 7 7
sokoban (50) # 48 ⊕ 50 ⊕ 50 ⊕ 50 50 50 50 50 48 48
spider (20) # 11 # 13 # 11 # 12 14 16 16 15 7 7
storage (30) ⊕ 15 ⊕ 16 ⊕ 16 ⊕ 16 15 16 16 16 15 15
termes (20) ⊕ 12 ⊕ 12 ⊕ 12 ⊕ 12 12 12 12 12 12 18
tetris (17) # 13 # 16 # 16 # 16 15 17 17 17 9 12
tidybot (40) # 30 ⊕ 34 ⊕ 34 ⊕ 34 32 32 32 32 30 29
tpp (30) ⊕ 12 ⊕ 12 ⊕ 12 ⊕ 12 7 8 8 8 8 8
transport (70) 23 + 25 23 + 25 24 24 24 24 27 34
trucks (30) # 14 ⊕ 16 ⊕ 14 ⊕ 16 14 14 14 14 13 13
visitall (40) # 22 # 22 # 22 # 22 30 30 23 30 17 18
woodworking (50) ⊕ 40 ⊕ 45 ⊕ 48 ⊕ 47 19 29 29 29 38 48
zenotravel (20) # 10 ⊕ 12 ⊕ 12 ⊕ 12 11 11 11 11 9 11

others (118) 105 105 105 105 105 105 105 105 105 105

Σ (1648) 992 1 117 1 100 1 113 939 1 004 996 999 943 1 055

Table 3: Per-domain comparison of the number of solved tasks for the forward GHSETA∗ with hQfw, A∗ with potential heuristics,
and forward and bi-directional blind symbolic search. The row “others” sums over domains with exactly the same number of
solved tasks by all compared methods. “+” indicates that GHSETA∗ solved every task that was solved by A∗ with the same
potential heuristic; “#” indicates that GHSETA∗ solved every task solved by

−→
b ; and “⊕” indicates the combination of both +

and # occurring at the same time. Finally, we highlight in blue (⊕) the cases where GHSETA∗ has strictly more coverage than
any of the two methods it combines.

search (Speck et al., 2020a). In terms of runtime, this translates into speed ups of up to several orders of
magnitude, while being detrimental in very few cases.

Overall, it seems GHSETA∗ with operator-potential heuristics tends to get the best from both the symbolic890

search and the heuristic search with potential heuristics. Furthermore, one can observe that the combination
of symbolic search and operator-potential heuristics is often better than the sum of its parts, i.e., in many
domains the combination solves every task solved by any of the two techniques it combines, and it achieves
a strictly higher coverage than the best of them.

5.4. Backward Search895

Goal-corrected operator-potential backward heuristics require partitioning of goal states by their heuristic
values. Algorithm 2 from Section 3.3 can provide such partitioning as a set of BDDs, but it can have
exponential runtime and it can generate an exponential number of partitions in the worst case.

Table 4 shows the number of tasks per domain where Algorithm 2 did not finish partitioning of goal
states within the time limit (the memory limit was never an issue). The partitioning is not possible in only900

a relatively small number of tasks from the IPC domains and it is highly dependent on the domain and
operator-potential heuristic. Moreover, only three tasks where the partitioning failed could be solved by
some variant of the backward symbolic search.

←−
I failed to compute partitioning of goal states in one task

in airport which was solved by
←−
A+I,

←−−−
S1k+I,

←−−
M2+I and

←−
b , and one task in tetris which was solved by

←−
A+I,
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Figure 7: Per-task comparison between the best-performing variant of forward GHSETA∗ (
−→
A+I) and the forward blind symbolic

search (
−→
b ).

domain
←−
I
←−
A+I
←−−−
S1k+I

←−−
M2+I

airport (30) 1 0 0 0
childsnack (20) 4 0 1 0
data-network (20) 1 0 0 0
depot (22) 1 2 1 0
mprime (35) 1 0 0 0
pathways (30) 1 0 0 0
pipesworld-notankage (50) 12 2 2 18
pipesworld-tankage (50) 16 15 8 12
rovers (40) 1 0 0 0
snake (20) 3 6 2 15
sokoban (50) 2 2 1 0
storage (30) 6 10 7 0
tetris (17) 5 1 2 1
tidybot (40) 1 0 0 0
tpp (30) 17 15 16 15

others (1164) 0 0 0 0

Σ (1648) 72 53 40 61

Table 4: The number of tasks in which the partitioning of goal states using Algorithm 2 failed. The row “others” sums over
domains where there is no difference between the compared methods.

Domain Dominance Task Dominance
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k
+
I

tot

←−
I – 22 18 18 23 – 86 64 65 78 818
←−
b 16 – 9 11 14 63 – 42 44 59 795
←−
A+I 12 16 – 6 14 40 41 – 15 35 794
←−−
M2+I 11 15 3 – 13 40 42 14 – 38 793
←−−−
S1k+I 7 12 5 5 – 30 34 11 15 – 770

Table 5: “Domain Dominance”: the row x and column y shows the number of domains where the method x solved more tasks
than the method y. “Task Dominance”: the row x and column y shows the number of tasks solved by x but not by y. “tot”:
the overall number of solved tasks (coverage).

←−−−
S1k+I and

←−−
M2+I.

←−−−
S1k+I failed to determine partitioning in one task from the tpp domain which was solved by905 ←−

I . Overall, partitioning of goal states fails (with very few exceptions) only in tasks that cannot be solved
by any variant of backward symbolic search. The median runtime of Algorithm 2 for all variants is about
1 millisecond, and the averages are 8.3, 3.5, 2.6 and 5 seconds for

←−
I ,
←−
A+I,

←−−−
S1k+I and

←−−
M2+I, respectively.

Therefore, running partitioning of goal states does not seem to be a limiting factor in practice.
To see how many partitions we get for a different operator-potential heuristic, i.e., how many different910

heuristic values goal states have, we plot cumulative graphs in Figure 8a showing the number of tasks (on
y-axis) having at least the number of goal BDD partitions given on x-axis. The median of the number of
partitions is 5 for I, and 1 for A+I, S1k+I, M2+I. The average is 42.1, 3.8, 17.8 and 3.8 for I, A+I, S1k+I and
M2+I, respectively. The number of tasks with 10 (100) or less partitions is 1 007 (1 438) for I, 1 503 (1 580)
for A+I, 1 311 (1 546) for S1k+I, and 1 469 (1 564) for M2+I. So, in a majority of tasks the partitioning results915
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(a) x-axis: The number of sets of goal states (each set represented
as a BDD) with different heuristic values. y-axis: The number of
tasks having the given number of goal BDDs or more.
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Figure 8: Cumulative graphs comparing the number of goal BDDs and the number of nodes they consist of.
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Figure 9: Per-task comparison between the best-performing variant of backward GHSETA∗ (
←−
I ) and the backward blind symbolic

search (
←−
b ).

in a very low number of partitions, it rarely happens that the number of partitions exceeds 100, and the
optimization for the initial state (I) tends to generate more partitions than other methods. The number of
partitions is also highly domain-dependent, and larger tasks tend to have more goal partitions than smaller
tasks from the same domain.

Figure 8b shows the size of the representation of goal states as a cumulative graph similar to Figure 8a,920

i.e., it shows the number of tasks (y-axis) where the sum of the number of BDD nodes over all goal BDDs
is at least the number given on the x-axis. Note that the number of goal states in every task is the same
for all variants of operator-potential heuristics, but the partitioning of goal states may be different. The
graph shows that a higher number of goal BDDs results in a less concise representation of the underlying
states which is not surprising. Nevertheless, the difference between the size of representations for different925

operator-potential heuristics seems to be less profound than the difference between the number of partitions.
Table 5 compares GHSETA∗ with different variants of hQbw and the blind backward symbolic search in

terms of the number of domains where one method solved more tasks than the other (“Domain Dominance”),
and the number of tasks solved by one method but not the other (“Task Dominance”). On one hand, we
can observe that using operator-potential heuristics I, A+I, and M2+I instead of blind search is beneficial in930

more domains than it is detrimental,
←−
I solves more tasks overall than

←−
b , and the overall coverage of

←−
b is

almost the same as
←−
A+I and

←−−
M2+I. On the other hand, all methods using hQbw seem to be complementary to

the blind search and to each other in terms of both domain and task dominance. Nevertheless,
←−
I stands

out in this comparison as it not only solves more tasks than any other method, but is also superior to all
other methods in the number of dominated domains and tasks. Moreover, we were not able to ascertain any935

correlation between the number of goal partitions and the number of solved tasks.
Similarly to the forward search, we can also observe in this case that the average size of an expanded

BDD is often decreased (Figure 9a), which leads to a speedup per expanded BDD (Figure 9b). The number
of expanded BDDs is also increased (Figure 9c) as expected because of the partitioning of states by both g-
and h-values. Where the backward search significantly differs from its forward counterpart is the comparison940

of the size of the BDD representation of sets of states (Figure 9d) and the overall runtime of backward
search (Figure 9e) which show complementarity of the blind backward search and the backward search with
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∅ ←−
b

←−
I

←−
A+I

←−−
M2+I

←−−−
S1k+I

←−−−−
oracle

∅ – 795 818 794 793 770 893
−→
b 943 1 055 991 998 998 974 1 084
−→
I 992 1 038 1 012 1 018 1 017 1 011 1 064
−→
A+I 1 117 1 163 1 121 1 150 1 138 1 136 1 178
−−→
M2+I 1 113 1 153 1 112 1 141 1 135 1 134 1 170
−−−→
S1k+I 1 100 1 135 1 099 1 118 1 108 1 112 1 152

−−−−→
oracle 1 130 1 185 1 136 1 159 1 152 1 150 1 204

Table 6: Overall number of tasks solved by different combinations of forward and backward symbolic search. A value in the row
x and the column y is the overall number of solved tasks where x was used for the forward direction and y for the backward
direction of the symbolic bi-directional search. ∅ means that no forward or backward search was used. oracle refers to selecting
the best variant for each task for the respective search direction. The highest coverage of all non-oracle variants is in bold.

Domain Dominance Task Dominance

−→ A+
I
-←− b

−−
→

M
2
+
I
-←
−

A
+
I

−→ A+
I
-←− I

−→ A+
I
←→ b −→ b ←− I ←− b −→ A+
I
-←− b

−−
→

M
2
+
I
-←
−

A
+
I

−→ A+
I
-←− I

−→ A+
I

←→ b −→ b ←− I ←− b tot

−→
A+I-
←−
b – 16 21 15 26 37 41 37 – 31 53 62 128 230 350 377 1 163

−−→
M2+I-

←−
A+I 4 – 12 13 23 35 39 36 9 – 37 60 120 220 326 363 1 141

−→
A+I-
←−
I 3 9 – 10 20 31 39 35 11 17 – 43 118 203 307 343 1 121

−→
A+I 8 15 15 – 22 31 39 37 16 36 39 – 128 184 320 351 1 117
←→
b 6 7 11 10 – 23 35 36 20 34 52 66 – 115 260 262 1 055
−→
b 4 5 6 4 2 – 26 30 10 22 25 10 3 – 186 190 943
←−
I 0 1 2 1 7 12 – 22 5 3 4 21 23 61 – 86 818
←−
b 1 4 5 4 1 6 16 – 9 17 17 29 2 42 63 – 795

Table 7: “Domain Dominance”: the row x and column y shows the number of domains where the method x solved more tasks
than the method y. “Task Dominance”: the row x and column y shows the number of tasks solved by x but not by y. “tot”:
the overall number of solved tasks (coverage).

operator-potential heuristic rather than a clear-cut improvement thanks to more informed search as was the
case for the forward symbolic search (cf. Figure 7d and 7e).

5.5. Bi-directional Search945

Symbolic bi-directional search allows us to combine any variant of the operator-potential heuristics in
forward and backward directions. Table 6 shows the comparison of the overall number of solved tasks for all
variants of forward and backward GHSETA∗ with operator-potential heuristics and blind symbolic search.
The baseline of blind bi-directional symbolic search (

←→
b ), which was the state-of-the-art variant of symbolic

search until now, solved 1 055 tasks, but all variants of GHSETA∗ using an operator-potential heuristic other950

than I in the forward direction overcome this result—even the forward-only GHSETA∗. The table also
shows that using operator-potential heuristics in the forward direction has much bigger impact on the overall
number of solved tasks than operator-potential heuristics in the backward direction. This is in-line with our
previous findings regarding forward-only and backward-only GHSETA∗.

Table 7 provides even more insights as it compares selected bi-directional variants with operator-potential955

heuristics with the best-performing variants of the forward-only and backward-only GHSETA∗ with operator-
potential heuristics and the blind variants of symbolic search in all directions. For the bi-directional GHSETA∗,
we selected the best-performing variant

−→
A+I-
←−
b and two more best-performing variants among those that do

not use the blind backward search. The bi-directional variants with operator-potential heuristics are clearly
superior to the forward-only and backward-only GHSETA∗ and blind variants in the overall number of solved960

tasks, in the number of domains where one variant solves more tasks than the other, and the number of tasks
solved by one variant but not the other. The only exception is

−→
A+I that dominates

−→
A+I-
←−
I and

−−→
M2+I-

←−
A+I in

more domains than the other way around (although it is still worse in the overall numbers).
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Figure 10: Per-task comparison between the best-performing variant of backward GHSETA∗ (
←−
I ) and the backward blind

symbolic search (
←−
b ).

Closer inspection of the experimental results showed that there are only 29 and 10 tasks solved by
←−
b

and
←−
I , respectively, that are not solved by

−→
A+I. This also at least partially explains why the best variant of965

the bi-directional symbolic search is
−→
A+I-
←−
b and not

−→
A+I-
←−
I even though the backward GHSETA∗ with I has

higher overall coverage than the backward blind search:
←−
I seems to work better than

←−
b in tasks that can

already be solved by
−→
A+I. Thus, the blind backward search seems to be more complementary to the forward

symbolic search with operator-potential heuristics.
Table 6 also shows the results for “oracles”, i.e., for each individual task we select the best variant in the970

respective direction to see what is the potential of the proposed techniques. In other words, oracle shows the
best possible result if we knew for each task in advance what is the best search technique from those introduced
in this paper. The numbers indicate that if we better understand what makes one operator-potential heuristic
better suited for a symbolic search in a particular task than the other, we may be able to further improve
the performance of the proposed techniques. For example, comparing

−−−−→
oracle-

←−
b (1 185) and

−−−−→
oracle-

←−−−−
oracle975

(1 204), one can observe that there are 19 instances that are only solved when operator-potential heuristics
are used within the backward search.

As in the previous cases, we also analyze in more detail the effect of the proposed methods on the number
and sizes of BDDs representing sets of states and the runtime. Figure 10 compares the best-performing bi-
directional variant

−→
A+I-
←−
b with (on the top row) the baseline

←→
b (which was up until now the best symbolic980

planner), and (on the bottom row) with
−→
A+I-
←−
I to see how using a different operator-potential heuristics in

the backward direction affects the search. Recall that
←−
I performs better than

←−
b , but

−→
A+I-
←−
b performs better

than
−→
A+I-
←−
I—there are only 11 tasks solved by

−→
A+I-
←−
I that are not solved by

−→
A+I-
←−
b , but 53 tasks solved by−→

A+I-
←−
b and not by

−→
A+I-
←−
I (cf. Table 7).

The comparison to
←→
b seems to replicate the improvements that we observed when comparing

−→
A+I and

−→
b985

(cf. Figure 7). This is not surprising as the difference between the methods is exactly replacing blind forward

search with
−→
A+I, which was shown to greatly improve performance in the unidirectional search case. The

bottom row of Figure 10 comparing
−→
A+I-
←−
b and

−→
A+I-
←−
I shows that replacing b with I in the backward direction

of the bi-directional search has much less profound effect than in the backward-only search (cf. Figure 9).
Nevertheless, we can still observe that using operator-potential heuristics in the backward direction (instead of990

blind search) results in more expanded BDDs (sets of states) because I induces more fine-grained partitioning
of sets of states (Figure 10c, bottom), and we can see that the size of the expanded BDDs tends to be smaller

with I (Figure 10a, bottom). However, as we already noted,
−→
A+I seems to be more complementary with

←−
b

than with
←−
I which results in a better overall performance of

−→
A+I-
←−
b .
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Domain Dominance Task Dominance
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tot

−→
A+I-
←−
b – 21 15 17 23 26 36 39 41 36 – 53 62 137 117 128 277 321 350 481 1 163

−→
A+I-
←−
I 3 – 10 14 17 20 34 35 39 34 11 – 43 120 106 118 246 288 307 451 1 121

−→
A+I 8 15 – 15 20 22 34 38 39 35 16 39 – 113 115 128 254 271 320 459 1 117
scrp 19 25 25 – 19 27 36 37 35 29 77 102 99 – 119 179 230 251 362 463 1 103
comp2 10 18 16 16 – 21 33 38 38 34 50 81 94 112 – 86 218 245 303 424 1 096
←→
b 6 11 10 14 12 – 25 32 35 34 20 52 66 131 45 – 188 232 260 389 1 055
lmc 1 5 5 2 6 9 – 21 28 28 15 26 38 28 23 34 – 100 184 299 901
ms 1 3 1 1 4 9 15 – 21 28 17 26 13 7 8 36 58 – 160 274 859
←−
I 0 2 1 7 5 7 16 16 – 27 5 4 21 77 25 23 101 119 – 255 818
cgm 1 2 2 6 0 1 8 8 10 – 5 10 16 46 5 3 51 62 62 – 518

Table 8: “Domain Dominance”: the row x and column y shows the number of domains where the method x solved more tasks
than the method y. “Task Dominance”: the row x and column y shows the number of tasks solved by x but not by y. “tot”:
the overall number of solved tasks (coverage). For cgm, we considered only the subset of domains supported by the planner, i.e.,
both the row and columns for cgm disregard domains caldera, cavediving, GED, maintenance, movie, mprime, snake, spider,
termes, and trucks.
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Figure 11: Per-task comparison of the runtime (in seconds) of the best variant of GHSETA∗ against the explicit state search
methods scrp and comp2.

5.6. Comparison to State-of-the-Art995

What remains is the comparison to other state-of-the-art planning methods. From the newly proposed
methods, we consider the best variants of GHSETA∗ in all directions (

−→
A+I,

←−
I ,
−→
A+I-
←−
b ), and the bi-directional

GHSETA∗ combining the best forward and backward variant (
−→
A+I-
←−
I ). We compare those to heuristic state-

based planners (lmc, ms, comp2, and scrp), the blind bi-directional symbolic search (
←→
b ), and the symbolic

search with pattern databases (cgm). Table 8 compares the methods by counting the number of domains1000

where one method solved more tasks than the other, and the number of tasks solved by one method but not
the other.−→

A+I,
−→
A+I-
←−
b , and

−→
A+I-
←−
I perform better than any other compared method in the overall number of solved

tasks. Since cgm performs worse than the blind bi-directional symbolic search, it is not surprising it performs
much worse than our best methods. Moreover, there is not much complementarity between cgm and our best1005

methods, i.e., there are only few domains or tasks where cgm performs better than
−→
A+I,

−→
A+I-
←−
b , or

−→
A+I-
←−
I .

A similar picture can be observed with the heuristic planners lmc and ms: They perform significantly worse
than our best methods and there is not much complementarity.

scrp and comp2 both solve less tasks than our best methods overall, but they also seem to be complemen-
tary to our approach. In particular, the number of domains where scrp performs better than our methods1010

is higher than the other way around. In fact, scrp is the best-performing planner (from the ones compared

here) in 28 domains, whereas
−→
A+I-
←−
b is the best-performing planner in 22 domains (

−→
A+I-
←−
I in 14 domains,

and
−→
A+I in 15 domains). Nevertheless, the overall numbers are in favor of the bi-directional GHSETA∗ with

operator-potential heuristics, and the difference seems to be spread over large number of structurally different
domains.1015

In terms of runtime, Figure 11 shows a comparison of our best approach,
−→
A+I-
←−
b , against several explicit-

state search planners. The comparison with scrp and comp2 is not very insightful as they use an expensive
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preprocessing phase to compute the heuristic with a fixed time limit of 900 and 300 seconds, respectively.
Due to this,

−→
A+I-
←−
b is faster in the majority of instances. The comparison with lmc and ms shows that,

despite the huge advantage in coverage of
−→
A+I-
←−
b , there are still a number of instances solved faster by these1020

planners. This is partially due to the preprocessing phase of
−→
A+I-
←−
b , which requires some time to compute

the potential heuristics and initialize the data-structures to perform symbolic search. But overall,
−→
A+I-
←−
b is

still up to several orders of magnitude faster on many instances.

6. Conclusion

Heuristic state space search and symbolic search are complementary enhancements to the same basic1025

algorithm—state space search—through the use of heuristic search guidance functions h, and of compact
state-set representations, respectively. It is natural to combine both approaches, yet that combination has
not been an unqualified success. One key reason for this is that, in symbolic search, h must be (efficiently)
applicable to sets of states rather than individual ones. Here we show that potential heuristics can be
reformulated in a manner allowing to do just that. The resulting methods empirically do not tend to suffer1030

from the second key problem (detrimental state partitionings). They soundly beat the previous state of the
art in symbolic search for optimal planning; they are on par with, as well as highly complementary to, the
state of the art in optimal heuristic search planning.

This result boosts our ability to plan optimally, and it re-emphasizes the role of symbolic search, in
particular heuristic symbolic search, as part of the state of the art, suggesting that further research effort1035

may be well placed in this area which recently received scant attention.
A specific question opened up by our research is whether the key to our method—the transformation

of heuristic values into a sum of heuristic-value changes per operator—may be applicable to other kinds of
heuristic functions as well. For example, for abstraction heuristics this is certainly not true per se, as the
change in heuristic value (abstract goal distance) is highly dependent on the state in general. But perhaps1040

abstractions can be designed so as to avoid that phenomenon. Similarly, it may be possible to adjust the
design of other admissible estimators, like landmark heuristics, to this end.

Beyond this, there is a number of issues that our work sheds light upon, and that would be worth be-
ing explored more broadly. Our experimental analysis shows that potential heuristics defined in previous
work obtain great performance in forward search, and a mild improvement in backward search. This sug-1045

gests to investigate what kind of potential heuristics can do better in each direction, as well as defining
new optimization criteria for potential heuristics, and/or investigating whether higher-dimensional potential
heuristics (Pommerening et al., 2017) can further improve performance. More generally, a key issue is to
improve our understanding of what makes a heuristic good in symbolic search. Operator-potential heuristics
offer a clear positive example, in contrast to previous analysis (Speck et al., 2020a). A promising avenue of1050

research is to characterize what kind of heuristics induce good state partitionings for sets of states repre-
sented as BDDs, and how the choice of representation (e.g., using EVMDDs instead (Lai et al., 1996; Ciardo
& Siminiceanu, 2002; Speck et al., 2018)) affects the usefulness of different heuristic functions. Another
promising line of research is on how to best make use of heuristics in symbolic bi-directional search. In recent
years, there have been significant advances in explicit state bi-directional heuristic search (Holte et al., 2017;1055

Shaham et al., 2019; Shperberg et al., 2020; Alcázar et al., 2020; Alcázar, 2021), which could shed light on
how to make the most out of heuristics in the symbolic search case too.
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Appendix A. General Case: Path-Dependent Heuristics

In this section, we consider the general case of path-dependent heuristics, where we allow for the heuristic
value of a state s to depend on the path used to reach s from the initial state (in forward search), or the goal
(in backward search). This opens several new possibilities:
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1. We can loose the assumption that vars(pre(o)) = vars(eff(o)) for every operator o, i.e., we move from1065

the normalized FDR to the FDR in its general form. So, for the rest this section, let Π = ⟨V,O, I, G⟩
denote a planning task (not necessarily normalized).

2. We no longer require that the operator-potential is the exact change in heuristic value. Rather, it
suffices if this is an admissible approximation. This allows to infer potential functions using the LP
encoding and rounding potentials down to the nearest integer instead of using the MIP encoding.1070

However, we observe in the experiments (see results below) that normalizing the task to have state-
dependent heuristics is almost always superior in practice. As the general case complicates the theory and
proofs, we decided to focus the main part of the paper on the conceptually simplest (and in practice better
performing) case and only consider path-dependent heuristics in this appendix.

The definitions of potential functions and potential heuristics (Definition 1) do not change for the general1075

case, but the sufficient conditions under which the potential heuristic is consistent (Equation (3)) need to be
adapted because it can happen that there is an operator o that affects a variable for which a precondition
is not defined, i.e., vars(eff(o)) \ vars(pre(o)) ̸= ∅. As in the previous case, we borrow the formulation from
Fǐser et al. (2020). Recall that Do(V ) denotes a disambiguation of V for pre(o) ∪ prv(o) for every o ∈ O.
Here, we assume Do(V ) is given to us for every o ∈ O and every V ∈ V (e.g., it has been computed by using1080

the method by Fǐser et al. (2020)).

Theorem 15. Let P denote a potential function. If Equation (2) holds and for every operator o ∈ O it holds
that ∑

V ∈vars(eff(o))

max
f∈Do(V )

P(f)−
∑

f∈eff(o)

P(f) ≤ cost(o), (A.1)

then hPfw is goal-aware, forward consistent, and forward admissible.

We show that for non-normalized FDR tasks, heuristics computed as sums of operator-potential values1085

over sequences of operators lead to path-dependent heuristics. Similarly to a forward heuristic hfw, a path-
dependent forward heuristic h̃fw : Efw 7→ R ∪ {∞} estimates the cost of optimal s-plans, but it takes
sequences of operators applicable in I instead of reachable states as its inputs, i.e., two different sequences
of operators π, π′ ∈ Efw such that πJIK = π′JIK = s ∈ Sfw can result in two different heuristic values

h̃fw(π) ̸= h̃fw(π
′). A path-dependent forward heuristic h̃fw is called forward admissible if h̃fw(π) ≤ h⋆

fw(s)1090

for every reachable state s ∈ Sfw and every sequence of operators π ∈ Efw such that πJIK = s.

A path-dependent backward heuristic h̃bw : Ebw 7→ R ∪ {∞} is defined analogously to the path-
dependent forward heuristic, i.e., it takes s-plans and estimates the cost of the optimal I-s-paths. A path-
dependent backward heuristic h̃bw is called backward admissible if h̃bw(π) ≤ h⋆

bw(s) for every s ∈ Sbw and
every π ∈ Ebw such that π is applicable in s and πJsK is a goal state.1095

General Operator-Potential Function

The previous definition of the operator-potential function (Definition 3) was pertinent to the normalized
FDR tasks only. Here, we need to generalize the definition to cover also cases where operators affect variables
not defined in their preconditions. Note that similarly to Definition 3, the general operator-potential function
Q̃ is defined using the left hand side of the consistency condition on potential function (Equation (A.1)) with1100

the opposite sign.

Definition 16. Given a potential function P, a function Q̃ : O 7→ R is called a general operator-potential
function for P if

Q̃(o) ≤
∑

f∈eff(o)

P(f)−
∑

V ∈vars(eff(o))

max
f∈Do(V )

P(f) (A.2)

for every operator o ∈ O.

31



V = {v1, v2}, dom(v1) = {a, b}, dom(v2) = {X,Y }

I = {⟨v1, a⟩, ⟨v2, X⟩}, G = {⟨v1, b⟩, ⟨v2, Y ⟩}

o ∈ O prv(o) pre(o) eff(o) cost(o) Q̃(o)

o1 ⟨v2, X⟩ ∅ ⟨v1, b⟩ 1 0
o2 ∅ ∅ ⟨v2, Y ⟩ 1 -1
o3 ⟨v2, Y ⟩ ⟨v1, a⟩ ⟨v1, b⟩ 1 1

f P(f)

⟨v1, a⟩ 0
⟨v1, b⟩ 1
⟨v2, X⟩ 0
⟨v2, Y ⟩ -1

state s hP
fw(s)

{⟨v1, a⟩, ⟨v2, X⟩} 0
{⟨v1, a⟩, ⟨v2, Y ⟩} -1
{⟨v1, b⟩, ⟨v2, X⟩} 1
{⟨v1, b⟩, ⟨v2, Y ⟩} 0

aX

bX

bY

aY

o1 o2

o1

o2

o2o2 o3

Figure A.1: Example planning task Π = ⟨V,O, I, G⟩ showing path dependency of operator-potential heuristics for non-normalized
FDR tasks. Q̃ is computed using Equation (A.3).

Typically, we would like to use the largest value satisfying the inequality, i.e.,1105

Q̃(o) =
∑

f∈eff(o)

P(f)−
∑

V ∈vars(eff(o))

max
f∈Do(V )

P(f), (A.3)

as that leads to the most informative heuristic. However, it is still safe to use lower values if that is convenient
for some reason. For example, this allows us to compute potential functions with floating-point operator
potentials and round them down to the nearest integer. Also note that if the input planning task is normalized,
then Q̃ computed with Equation (A.3) is equal to Q, because in normalized tasks, Do(V ) is a singleton for
every V ∈ vars(eff(o)), i.e.,

⋃
V ∈vars(eff(o)) Do(V ) = pre(o).1110

Next, we show that Q̃(o) (constructed from the potential function P) is a lower bound on the change of
the heuristic value of hPfw induced by the operator o.

Proposition 17. Let Q̃ denote a general operator-potential function for P, s ∈ Sfw denote a forward reachable
state, and let o ∈ O denote an operator applicable in s. Then

∑
f∈s P(f) + Q̃(o) ≤

∑
f∈oJsK P(f).

Proof. We prove the case where Q̃(o) =
∑

f∈eff(o) P(f) −
∑

V ∈vars(eff(o)) maxf∈Do(V ) P(f), the general case1115

from Definition 16 easily follows. Let t = oJsK \ eff(o) denote the set of facts unaffected by the operator o,
and let x = s \ t denote the set of facts changed by o. So, we have

∑
f∈s P(f) =

∑
f∈t P(f) +

∑
f∈x P(f) and∑

f∈oJsK P(f) =
∑

f∈t P(f) +
∑

f∈eff(o) P(f). Therefore, we need to prove that
∑

f∈x P(f) +
∑

f∈eff(o) P(f)−∑
V ∈vars(eff(o)) maxf∈Do(V ) P(f) ≤

∑
f∈eff(o) P(f) which holds iff

∑
f∈x P(f)−

∑
V ∈vars(eff(o)) maxf∈Do(V ) P(f) ≤

0 holds. It is easy to see that vars(x) = vars(eff(o)) and from the definition of disambiguation it follows1120

that for every V ∈ vars(x) it holds that x[V ] ∈ Do(V ). Therefore, for every V ∈ vars(x), we have that
P(x[V ]) ≤ maxf∈Do(V ) P(f), which concludes the proof.

Unlike Q in case of normalized FDR tasks, Q̃ for non-normalized tasks does not necessarily capture the
change of the heuristic value exactly, even if we take the maximal value satisfying the inequality in Equa-
tion A.2. Consider the simple non-normalized planning task in Figure A.1 and states “aX” and “bX”, and1125

the operator o1. The h
P
fw-value for “aX” is zero and hPfw-value for “bX” is one, i.e., the change of the heuristic

value is one, but Q̃(o1) = 0 (as Equation A.2 needs to account also for the self-loop resulting from applying
o1 in the state “bX”).

Forward Direction

Path-dependent operator-potential forward heuristics are defined analogously to their state-dependent1130

counterparts (Definition 6), except that here we use Q̃ instead of Q.
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Definition 18. Let Q̃ denote a general operator-potential function for P. A path-dependent operator-
potential forward heuristic h̃Qfw : Efw 7→ R ∪ {∞} for Q̃ is defined as

h̃Qfw(π) =
∑
f∈I

P(f) +
∑
i∈[n]

Q̃(oi) (A.4)

for any sequence of operators π = ⟨o1, . . . , on⟩ applicable in I.

Observe that h̃Qfw can, indeed, be path-dependent for non-normalized planning tasks. Consider the example1135

planning task in Figure A.1 again. The goal state “bY” can be reached from the initial state “aX” by two
different paths, π = ⟨o1, o2⟩ and π′ = ⟨o2, o3⟩, and we obtain two different heuristic values for π and π′.

Namely, h̃Qfw(π) = hPfw(I) + Q̃(o1) + Q̃(o2) = −1 and h̃Qfw(π
′) = hPfw(I) + Q̃(o2) + Q̃(o3) = 0.

Next, we show that if the underlying potential heuristic hPfw is forward admissible, then the path-dependent

operator-potential forward heuristic h̃Qfw is also forward admissible. This follows simply from the fact that Q̃1140

provides lower bounds on the change of the heuristic value of hPfw induced by each operator. So, if we start
from the admissible estimate for the initial state, then adding these lower bounds results in an admissible
estimate for all forward reachable states.

Theorem 19. If hPfw is forward admissible, then h̃Qfw is forward admissible.

Proof. We need to prove that for any π = ⟨o1, . . . , on⟩ ∈ Efw and s = πJIK it holds that
∑

f∈I P(f) +1145 ∑
i∈[n] Q̃(oi) ≤

∑
f ′∈s P(f

′), which we will prove by induction.

The claim clearly holds for the empty sequence π because hPfw(I) = h̃Qfw(I). So, we assume
∑

f∈I P(f) +∑
i∈[k] Q̃(oi) ≤

∑
f∈s′ P(f) holds for some 0 < k < n, π′ = ⟨o1, . . . , ok⟩, and s′ = π′JIK, and we need to prove

that
∑

f∈I P(f) +
∑

i∈[k+1] Q̃(oi) ≤
∑

f∈ok+1Js′K P(f) also holds.

From the assumption
∑

f∈I P(f) +
∑

i∈[k] Q̃(oi) ≤
∑

f∈s′ P(f) it follows that1150 ∑
f∈I

P(f) +
∑
i∈[k]

Q̃(oi) + Q̃(ok+1) ≤
∑
f∈s′

P(f) + Q̃(ok+1).

From Proposition 17, it follows that
∑

f∈s′ P(f) + Q̃(ok+1) ≤
∑

f∈ok+1Js′K P(f). Therefore, we have∑
f∈I

P(f) +
∑

i∈[k+1]

Q̃(oi) =
∑
f∈I

P(f) +
∑
i∈[k]

Q̃(oi) + Q̃(ok+1) ≤
∑
f∈s′

P(f) + Q̃(ok+1) ≤
∑

f∈ok+1Js′K

P(f),

which concludes the proof.

This allows us to use operator-potential heuristics also for non-normalized planning tasks, but, as we
noted before, it almost always pays off to normalize planning tasks and use hQfw (which is forward consistent)

instead of using the path-dependent variant h̃Qfw with the original planning task.1155

Backward Direction

Using Q̃ instead of Q to compute path-dependent operator-potential backward heuristics allows us to use
it also for non-normalized planning tasks and without goal-splitting. Note that in the case of path-dependent
heuristics we also require Equation (A.1) to hold for the potential heuristic P, which is necessary to ensure
backward admissibility of the heuristics.1160

Definition 20. Let Q̃ denote a general operator-potential function for P such that Equation (2) and Equa-

tion (A.1) hold. A path-dependent operator-potential backward heuristic h̃Qbw : Ebw 7→ R ∪ {∞} for
Q is defined as

h̃Qbw(π) =
∑
f∈I

P(f) +
∑
i∈[n]

Q̃(oi) (A.5)

for every sequence of operators π = ⟨o1, . . . , on⟩ ∈ Ebw, i.e., for every s-plan π.
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I A+I S1k+I M2+I

h̃Q
fw

#domains with higher coverage than hQ
fw 1 1 0 1

#tasks solved by h̃Q
fw but not by hQ

fw 3 1 1 2

overall number of solved tasks 952 1 081 1 057 1 078

hQ
fw

#domains with higher coverage than h̃Q
fw 11 11 11 10

#tasks solved by hQ
fw but not by h̃Q

fw 43 37 44 37

overall number of solved tasks 992 1 117 1 100 1 113

Table A.1: Comparison of the path-dependent operator-potential forward heuristics (h̃Qfw) on the original planning task, and the

(consistent) operator-potential forward heuristics (hQfw) on the normalized tasks. Whenever the original planning task is already

normalized, h̃Qfw is used as a consistent heuristic, i.e., it equals to hQfw. We compare the number of domains where one method
solved more tasks than the other, the number of tasks solved by one method but not the other, and the overall number of solved
tasks.

Theorem 21. h̃Qbw is backward admissible.1165

Proof. Any estimate for a backward dead-end state is admissible. Let π = ⟨o1, . . . , on⟩ denote a plan, and
let m ∈ [n]. It is enough to show that

∑
f∈I P(f) +

∑
i∈[m+1,n] Q̃(oi) ≤

∑
j∈[m] cost(oj). We show this for

Q̃(o) =
∑

f∈eff(o) P(f) −
∑

V ∈vars(eff(o)) maxf∈Do(V ) P(f), and it is clear that the inequality holds for lower

values of Q̃(o).
Since Equation (2) and Equation (A.1) hold, it follows from Theorem 15 that hPfw is forward consistent,1170

goal-aware, and forward admissible, and therefore h̃Qfw is forward admissible (Theorem 19). Therefore, we
have that

h̃Qfw(πJIK) =
∑
f∈I

P(f) +
∑
i∈[n]

Q̃(oi) =
∑
f∈I

P(f) +
∑
j∈[m]

Q̃(oj) +
∑

i∈[m+1,n]

Q̃(oi) ≤ 0.

Therefore it follows that
∑

f∈I P(f) +
∑

i∈[m+1,n] Q̃(oi) ≤ −
∑

j∈[m] Q̃(oj).

From Definition 16 and Equation (A.1), it follows that

Q̃(o) =
∑

f∈eff(o)

P(f)−
∑

V ∈vars(eff(o))

max
f∈Do(V )

P(f) ≥ −cost(o),

therefore −Q̃(o) ≤ cost(o) for every operator o, therefore it holds that −
∑

j∈[m] Q̃(oj) ≤
∑

j∈[m] cost(oj),1175

which concludes the proof.

Symbolic Search with Path-Dependent Heuristics

Algorithm 1 describes the GHSETA∗ algorithm when assuming consistent heuristics. However, path-
dependent heuristics may create inconsistencies, leading to states being expanded with sub-optimal g-values.
This, in turn, may lead to states being incorrectly pruned in lines 8 or 13, and the algorithm could return1180

a sub-optimal plan.
However, the algorithm can easily be adapted to support inconsistent (and path-dependent) heuristics

by re-expanding any state if it is reached again with a lower g-value. This requires to replace the closed

set (which is used in Algorithm 1 to hold all expanded states) by multiple subsets, closedg, each of which
contains the set of all states expanded with the corresponding g-value. Therefore, in line 11, states are1185

inserted in closedg. And in lines 8 and 13, we loop over all g′ ≤ g to remove any state in closedg′ and
closedg′+c, respectively.

Results

We evaluate symbolic search with state-dependent (hQfw/h
Q
bw) and path-dependent (h̃Qfw/h̃

Q
bw) operator-

potential heuristics. The state-dependent variant is the one we analyzed in detail in Section 5: It requires1190

to normalize planning tasks and partitioning of goal states (in case of backward symbolic search). For path-
dependent heuristics, we avoid normalizing the task and partitioning of goal states. But, in exchange, we
need to re-expand states within the GHSETA∗ algorithm as explained above.
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I A+I S1k+I M2+I

h̃Q
bw-orig

#domains with higher coverage than h̃Q
bw-norm 3 1 2 3

#tasks solved by h̃Q
bw-orig but not by h̃Q

bw-norm 3 3 3 4

#domains with higher coverage than hQ
bw 5 3 6 3

#tasks solved by h̃Q
bw-orig but not by hQ

bw 14 12 19 13

overall number of solved tasks 715 725 713 725

h̃Q
bw-norm

#domains with higher coverage than h̃Q
bw-orig 5 5 6 3

#tasks solved by h̃Q
bw-norm but not by h̃Q

bw-orig 11 13 11 10

#domains with higher coverage than hQ
bw 5 2 8 3

#tasks solved by h̃Q
bw-norm but not by hQ

bw 13 9 22 13

overall number of solved tasks 723 735 721 731

hQ
bw

#domains with higher coverage than h̃Q
bw-orig 28 20 22 18

#tasks solved by hQ
bw but not by h̃Q

bw-orig 117 81 76 81

#domains with higher coverage than h̃Q
bw-norm 25 19 21 21

#tasks solved by hQ
bw but not by h̃Q

bw-norm 108 68 71 75

overall number of solved tasks 818 794 770 793

Table A.2: Comparison of the path-dependent operator-potential backward heuristics on the original planning tasks (h̃Qbw-orig),

on the tasks normalized with the “multiplication” method but without goal splitting (h̃Qbw-norm), and the operator-potential

backward heuristics on normalized tasks with goal-splitting (hQbw). We compare the number of domains where one method
solved more tasks than the other, the number of tasks solved by one method but not the other, and the overall number of solved
tasks.
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h̃Q
fw-h̃

Q
bw-orig

#domains with higher coverage than hQ
fw-h̃

Q
bw-norm 3 1 3 1 4 2

#tasks solved by h̃Q
fw-h̃

Q
bw-orig but not by hQ

fw-h̃
Q
bw-norm 8 5 5 3 5 5

#domains with higher coverage than hQ
fw-h

Q
bw 5 6 6 8 9 4

#tasks solved by h̃Q
fw-h̃

Q
bw-orig but not by hQ

fw-h
Q
bw 10 13 8 19 18 9

overall number of solved tasks 987 985 1 104 1 104 1 083 1 080

hQ
fw-h̃

Q
bw-norm

#domains with higher coverage than h̃Q
fw-h̃

Q
bw-orig 14 14 14 15 14 8

#tasks solved by hQ
fw-h̃

Q
bw-norm but not by h̃Q

fw-h̃
Q
bw-orig 28 29 30 36 33 27

#domains with higher coverage than hQ
fw-h

Q
bw 5 5 6 8 8 5

#tasks solved by hQ
fw-h̃

Q
bw-norm but not by hQ

fw-h
Q
bw 8 12 11 22 22 10

overall number of solved tasks 1 007 1 009 1 129 1 137 1 111 1 102

hQ
fw-h

Q
bw

#domains with higher coverage than h̃Q
fw-h̃

Q
bw-orig 14 16 17 18 14 11

#tasks solved by hQ
fw-h

Q
bw but not by h̃Q

fw-h̃
Q
bw-orig 41 45 54 53 47 41

#domains with higher coverage than hQ
fw-h̃

Q
bw-norm 7 8 9 7 8 7

#tasks solved by hQ
fw-h

Q
bw but not by hQ

fw-h̃
Q
bw-norm 19 20 32 23 23 20

overall number of solved tasks 1 018 1 017 1 150 1 138 1 112 1 112

Table A.3: Same as Table A.1 and Table A.2, but for bi-directional symbolic search. Note that in the case of hQfw-h̃Qbw-norm, we

use inconsistent h̃Qbw, but forward consistent hQfw as the tasks are already normalized.

Table A.1 summarizes the comparison between the two variants in forward search. There are at most
three tasks where using h̃Qfw is beneficial to increase coverage, whereas hQfw performs better in 37 to 44 tasks,1195

depending on the optimization criteria of the underlying potential heuristics.
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Table A.2 shows results for backward search. Here, we include as well results for the path-dependent
heuristic on the normalized task (but without goal-splitting), to better understand the effect that task
normalization and goal-splitting has on the overall performance.

As in the previous case, using path-dependent variant of operator-potential backward heuristics is rarely1200

beneficial over using the state-dependent variant with goal-splitting hQbw. Normalizing the task is actually an
advantage, due to improving the informativeness of the operator-potential heuristics (as the max expression
in Equation (A.2) is basically an admissible approximation).

Finally, as for hQfw and hQbw, h̃
Q
fw and h̃Qbw can be combined into bi-directional symbolic search, but as in the

previous cases, it rarely pays off to use the path-dependent variant of the heuristics. Table A.3 summarizes1205

the comparison on selected variants. Overall, we observe that using the consistent state-dependent operator-
potential heuristics is mostly beneficial compared to the same heuristics without normalizing the task.
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